Addison Chan
Utilizing Massive Spatiotemporal Samples for Efficient and Accurate Trajectory Prediction
Chan, Addison; Li, Frederick W.B.
Abstract
Trajectory prediction is widespread in mobile computing, and helps support wireless network operation, location-based services, and applications in pervasive computing. However, most prediction methods are based on very coarse geometric information such as visited base transceiver stations, which cover tens of kilometers. These approaches undermine the prediction accuracy, and thus restrict the variety of application. Recently, due to the advance and dissemination of mobile positioning technology, accurate location tracking has become prevalent. The prediction methods based on precise spatiotemporal information are then possible. Although the prediction accuracy can be raised, a massive amount of data gets involved, which is undoubtedly a huge impact on network bandwidth usage. Therefore, employing fine spatiotemporal information in an accurate prediction must be efficient. However, this problem is not addressed in many prediction methods. Consequently, this paper proposes a novel prediction framework that utilizes massive spatiotemporal samples efficiently. This is achieved by identifying and extracting the information that is beneficial to accurate prediction from the samples. The proposed prediction framework circumvents high bandwidth consumption while maintaining high accuracy and being feasible. The experiments in this study examine the performance of the proposed prediction framework. The results show that it outperforms other popular approaches.
Citation
Chan, A., & Li, F. W. (2013). Utilizing Massive Spatiotemporal Samples for Efficient and Accurate Trajectory Prediction. IEEE Transactions on Mobile Computing, 12(12), 2346-2359. https://doi.org/10.1109/tmc.2012.214
Journal Article Type | Article |
---|---|
Publication Date | Dec 1, 2013 |
Deposit Date | Jul 6, 2016 |
Publicly Available Date | Jul 6, 2016 |
Journal | IEEE Transactions on Mobile Computing |
Print ISSN | 1536-1233 |
Electronic ISSN | 1558-0660 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Issue | 12 |
Pages | 2346-2359 |
DOI | https://doi.org/10.1109/tmc.2012.214 |
Public URL | https://durham-repository.worktribe.com/output/1378318 |
Files
Accepted Journal Article
(1.4 Mb)
PDF
Copyright Statement
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
A Differential Diffusion Theory for Participating Media
(2023)
Journal Article
An end-to-end dynamic point cloud geometry compression in latent space
(2023)
Journal Article
IAACS: Image Aesthetic Assessment Through Color Composition And Space Formation
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search