Skip to main content

Research Repository

Advanced Search

Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

Karagiannis, G.; Lin, G.

Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs Thumbnail


Authors

G. Lin



Abstract

Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.

Citation

Karagiannis, G., & Lin, G. (2014). Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs. Journal of Computational Physics, 259, 114-134. https://doi.org/10.1016/j.jcp.2013.11.016

Journal Article Type Article
Acceptance Date Nov 13, 2013
Online Publication Date Dec 1, 2013
Publication Date Feb 15, 2014
Deposit Date Nov 10, 2016
Publicly Available Date Aug 22, 2017
Journal Journal of Computational Physics
Print ISSN 0021-9991
Electronic ISSN 1090-2716
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 259
Pages 114-134
DOI https://doi.org/10.1016/j.jcp.2013.11.016
Public URL https://durham-repository.worktribe.com/output/1370770

Files





You might also like



Downloadable Citations