Y. Kaneko
Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data
Kaneko, Y.; Carpenter, B.; Nielsen, S.
Abstract
Recent laboratory shear-slip experiments conducted on a nominally flat frictional interface reported the intriguing details of a two-phase nucleation of stick-slip motion that precedes the dynamic rupture propagation. This behavior was subsequently reproduced by a physics-based model incorporating laboratory-derived rate-and-state friction laws. However, applying the laboratory and theoretical results to the nucleation of crustal earthquakes remains challenging due to poorly constrained physical and friction properties of fault zone rocks at seismogenic depths. Here we apply the same physics-based model to simulate the nucleation process of crustal earthquakes using unique data acquired during the San Andreas Fault Observatory at Depth (SAFOD) experiment and new and existing measurements of friction properties of SAFOD drill core samples. Using this well-constrained model, we predict what the nucleation phase will look like for magnitude ∼2 repeating earthquakes on segments of the San Andreas Fault at a 2.8 km depth. We find that despite up to 3 orders of magnitude difference in the physical and friction parameters and stress conditions, the behavior of the modeled nucleation is qualitatively similar to that of laboratory earthquakes, with the nucleation consisting of two distinct phases. Our results further suggest that precursory slow slip associated with the earthquake nucleation phase may be observable in the hours before the occurrence of the magnitude ∼2 earthquakes by strain measurements close (a few hundred meters) to the hypocenter, in a position reached by the existing borehole.
Citation
Kaneko, Y., Carpenter, B., & Nielsen, S. (2017). Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data. Geophysical Research Letters, 44(1), 162-173. https://doi.org/10.1002/2016gl071569
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 30, 2016 |
Online Publication Date | Jan 13, 2017 |
Publication Date | Jan 16, 2017 |
Deposit Date | Mar 13, 2017 |
Publicly Available Date | Jul 13, 2017 |
Journal | Geophysical Research Letters |
Print ISSN | 0094-8276 |
Electronic ISSN | 1944-8007 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 44 |
Issue | 1 |
Pages | 162-173 |
DOI | https://doi.org/10.1002/2016gl071569 |
Public URL | https://durham-repository.worktribe.com/output/1361620 |
Files
Published Journal Article
(3.6 Mb)
PDF
Copyright Statement
Kaneko, Y., B. M. Carpenter, and S. B. Nielsen (2017), Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data, Geophysical Research Letters, 44, 162-173, DOI: 10.1002/2016GL071569. To view the published open abstract, go to https://doi.org/ and enter the DOI.
You might also like
Fracture Energy and Breakdown Work During Earthquakes
(2023)
Journal Article
Frictional power dissipation in a seismic ancient fault
(2023)
Journal Article
Scaling Seismic Fault Thickness From the Laboratory to the Field
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search