A.K. Higginson
Formation of Heliospheric Arcs of Slow Solar Wind
Higginson, A.K.; Antiochos, S.K.; DeVore, C.R.; Wyper, P.F.; Zurbuchen, T.H.
Authors
S.K. Antiochos
C.R. DeVore
Dr Peter Wyper peter.f.wyper@durham.ac.uk
Associate Professor
T.H. Zurbuchen
Abstract
A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun's atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.
Citation
Higginson, A., Antiochos, S., DeVore, C., Wyper, P., & Zurbuchen, T. (2017). Formation of Heliospheric Arcs of Slow Solar Wind. Astrophysical Journal Letters, 840(1), Article L10. https://doi.org/10.3847/2041-8213/aa6d72
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 15, 2017 |
Online Publication Date | May 3, 2017 |
Publication Date | May 3, 2017 |
Deposit Date | Jul 7, 2017 |
Publicly Available Date | Jul 7, 2017 |
Journal | Astrophysical Journal Letters |
Print ISSN | 2041-8205 |
Electronic ISSN | 2041-8213 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 840 |
Issue | 1 |
Article Number | L10 |
DOI | https://doi.org/10.3847/2041-8213/aa6d72 |
Public URL | https://durham-repository.worktribe.com/output/1355757 |
Files
Published Journal Article
(1.5 Mb)
PDF
Copyright Statement
© 2017. The American Astronomical Society. All rights reserved.
You might also like
Interchange reconnection dynamics in a solar coronal pseudo-streamer
(2023)
Journal Article
Plasmoids, Flows, and Jets during Magnetic Reconnection in a Failed Solar Eruption
(2023)
Journal Article
The Imprint of Intermittent Interchange Reconnection on the Solar Wind
(2022)
Journal Article
Comparison of magnetic energy and helicity in coronal jet simulations
(2023)
Journal Article
The Dynamic Structure of Coronal Hole Boundaries
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search