S. Azzawi
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
Azzawi, S.; Hindmarch, A.T.; Atkinson, D.
Authors
Dr Aidan Hindmarch a.t.hindmarch@durham.ac.uk
Associate Professor
Professor Del Atkinson del.atkinson@durham.ac.uk
Professor
Abstract
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
Citation
Azzawi, S., Hindmarch, A., & Atkinson, D. (2017). Magnetic damping phenomena in ferromagnetic thin-films and multilayers. Journal of Physics D: Applied Physics, 50(47), Article 473001. https://doi.org/10.1088/1361-6463/aa8dad
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 19, 2017 |
Online Publication Date | Oct 25, 2017 |
Publication Date | 2017-11 |
Deposit Date | Oct 25, 2017 |
Journal | Journal of Physics D: Applied Physics |
Print ISSN | 0022-3727 |
Electronic ISSN | 1361-6463 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 50 |
Issue | 47 |
Article Number | 473001 |
DOI | https://doi.org/10.1088/1361-6463/aa8dad |
Public URL | https://durham-repository.worktribe.com/output/1345817 |
You might also like
Threshold interface magnetization required to induce magnetic proximity effect
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search