J. Han
HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations
Han, J.; Cole, S.; Frenk, C.S.; Benitez-Llambay, A.; Helly, J.
Authors
Professor Shaun Cole shaun.cole@durham.ac.uk
Director of the Institute for Computational Cosmology
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
A. Benitez-Llambay
J. Helly
Abstract
Dark matter subhalos are the remnants of (incomplete) halo mergers. Identifying them and establishing their evolutionary links in the form of merger trees is one of the most important applications of cosmological simulations. The HBT (Hierachical Bound-Tracing) code identifies haloes as they form and tracks their evolution as they merge, simultaneously detecting subhaloes and building their merger trees. Here we present a new implementation of this approach, HBT+ , that is much faster, more user friendly, and more physically complete than the original code. Applying HBT+ to cosmological simulations, we show that both the subhalo mass function and the peak-mass function are well fitted by similar double-Schechter functions. The ratio between the two is highest at the high-mass end, reflecting the resilience of massive subhaloes that experience substantial dynamical friction but limited tidal stripping. The radial distribution of the most-massive subhaloes is more concentrated than the universal radial distribution of lower mass subhaloes. Subhalo finders that work in configuration space tend to underestimate the masses of massive subhaloes, an effect that is stronger in the host centre. This may explain, at least in part, the excess of massive subhaloes in galaxy cluster centres inferred from recent lensing observations. We demonstrate that the peak-mass function is a powerful diagnostic of merger tree defects, and the merger trees constructed using HBT+ do not suffer from the missing or switched links that tend to afflict merger trees constructed from more conventional halo finders. We make the HBT+ code publicly available.
Citation
Han, J., Cole, S., Frenk, C., Benitez-Llambay, A., & Helly, J. (2018). HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 474(1), 604-617. https://doi.org/10.1093/mnras/stx2792
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 23, 2017 |
Online Publication Date | Oct 26, 2017 |
Publication Date | Feb 11, 2018 |
Deposit Date | Jan 15, 2018 |
Publicly Available Date | Jan 16, 2018 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 474 |
Issue | 1 |
Pages | 604-617 |
DOI | https://doi.org/10.1093/mnras/stx2792 |
Public URL | https://durham-repository.worktribe.com/output/1341514 |
Files
Published Journal Article
(3.5 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2017. The Authors.
Published by Oxford University Press on behalf of the Royal Astronomical Society.
You might also like
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
The diversity of rotation curves of simulated galaxies with cusps and cores
(2023)
Journal Article
Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search