W.I. Cowley
Predictions for deep galaxy surveys with JWST from ΛCDM
Cowley, W.I.; Baugh, C.M.; Cole, S.; Frenk, C.S.; Lacey, C.G.
Authors
Professor Carlton Baugh c.m.baugh@durham.ac.uk
Professor
Professor Shaun Cole shaun.cole@durham.ac.uk
Director of the Institute for Computational Cosmology
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
Professor Cedric Lacey cedric.lacey@durham.ac.uk
Emeritus Professor
Abstract
We present predictions for the outcome of deep galaxy surveys with the James Webb Space Telescope (JWST) obtained from a physical model of galaxy formation in Λ cold dark matter. We use the latest version of the GALFORM model, embedded within a new (800 Mpc)3 dark matter only simulation with a halo mass resolution of Mhalo > 2 × 109h−1 M⊙. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at z ≲ 6, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for 7 ≲ z ≲ 10 which is in good agreement with observations. We make predictions for the evolution of the luminosity function from z = 16 to z = 0 in all broad-band filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on JWST and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that ∼1 galaxy per field of view will be observable at z ∼ 11 for a 104 s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with Planck data, predicts number densities of observable galaxies ∼5 × greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at z ≳ 6. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with JWST, and for the angular sizes of galaxies in JWST bands.
Citation
Cowley, W., Baugh, C., Cole, S., Frenk, C., & Lacey, C. (2018). Predictions for deep galaxy surveys with JWST from ΛCDM. Monthly Notices of the Royal Astronomical Society, 474(2), 2352-2372. https://doi.org/10.1093/mnras/stx2897
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 2, 2017 |
Online Publication Date | Nov 13, 2017 |
Publication Date | Feb 21, 2018 |
Deposit Date | Jan 15, 2018 |
Publicly Available Date | Jan 16, 2018 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 474 |
Issue | 2 |
Pages | 2352-2372 |
DOI | https://doi.org/10.1093/mnras/stx2897 |
Public URL | https://durham-repository.worktribe.com/output/1340930 |
Files
Published Journal Article
(2.3 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
The FLAMINGO project: revisiting the S8 tension and the role of baryonic physics
(2023)
Journal Article
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search