A.M. Lovell
Topographic controls on the surging behaviour of Sabche Glacier, Nepal (1967 to 2017)
Lovell, A.M.; Carr, J.R.; Stokes, C.R.
Abstract
Using a combination of Landsat, Pléiades and CORONA satellite imagery from 1967 to 2017, we map changes in the terminus position, ice surface velocity and surface elevation of Sabche Glacier, and report the first observations of surging behaviour in central Nepal. Our observations show that Sabche Glacier surged four times over the last 50 years. The three most recent surges occurred at 10 to 11-year cycles, which is one of the shortest surge cycles ever recorded. Detailed analysis of the most recent surge (2012 onwards), indicates that the glacier advanced 2.2 km and experienced maximum velocities of 1.6 ± 0.10 m day−1. During this surge, there was a surface elevation gain at the terminus of up to 90 ± 6.19 m a−1, with a corresponding surface lowering of between 10 ± 6.19 and 60 ± 6.19 m a−1, 3 km up-glacier of the terminus. This transfer of mass amounted to a volume of ~2.7 × 107 ± 0.1 × 107 m3a−1. Sabche Glacier is the first surge-type glacier to be observed in the central Himalayas, but this is consistent with a previous global analysis which indicates that surge-type glaciers should exist in the region. We hypothesise that the surge is at least partially controlled by subglacial topography, whereby a major subglacial overdeepening and constriction 3 km up-glacier of the terminus provides resistance to glacier flow from the accumulation area to the ablation area. This overdeepening appears to store mass until a threshold is crossed, after which the glacier flows out of the subglacial depression and rapidly surges over a bedrock lip and down the valley. Thus, whilst the surges are likely to be facilitated by subglacial processes (e.g. changes in subglacial hydrology and/or basal thermal regime), the topographic setting of the glacier appears to be modulating both the timing and duration of each surge.
Citation
Lovell, A., Carr, J., & Stokes, C. (2018). Topographic controls on the surging behaviour of Sabche Glacier, Nepal (1967 to 2017). Remote Sensing of Environment, 210, 434-443. https://doi.org/10.1016/j.rse.2018.03.036
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 24, 2018 |
Online Publication Date | Apr 3, 2018 |
Publication Date | Jun 1, 2018 |
Deposit Date | Mar 29, 2018 |
Publicly Available Date | Apr 3, 2019 |
Journal | Remote Sensing of Environment |
Print ISSN | 0034-4257 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 210 |
Pages | 434-443 |
DOI | https://doi.org/10.1016/j.rse.2018.03.036 |
Public URL | https://durham-repository.worktribe.com/output/1336153 |
Files
Accepted Journal Article
(1.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2018 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Response of the East Antarctic Sheet to Past and Future Climate Change
(2022)
Journal Article
21st century response of Petermann Glacier, northwest Greenland to ice shelf loss
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search