Skip to main content

Research Repository

Advanced Search

Generalised form factor dark matter in the Sun

Vincent, Aaron C.; Serenelli, Aldo; Scott, Pat

Generalised form factor dark matter in the Sun Thumbnail


Authors

Aaron C. Vincent

Aldo Serenelli

Pat Scott



Abstract

We study the effects of energy transport in the Sun by asymmetric dark matter with momentum and velocity-dependent interactions, with an eye to solving the decade-old Solar Abundance Problem. We study effective theories where the dark matter-nucleon scattering cross-section goes as vrel2n and q2n with n = −1, 0, 1 or 2, where vrel is the dark matter-nucleon relative velocity and q is the momentum exchanged in the collision. Such cross-sections can arise generically as leading terms from the most basic nonstandard DM-quark operators. We employ a high-precision solar simulation code to study the impact on solar neutrino rates, the sound speed profile, convective zone depth, surface helium abundance and small frequency separations. We find that the majority of models that improve agreement with the observed sound speed profile and depth of the convection zone also reduce neutrino fluxes beyond the level that can be reasonably accommodated by measurement and theory errors. However, a few specific points in parameter space yield a significant overall improvement. A 3–5 GeV DM particle with σSI ∝ q2 is particularly appealing, yielding more than a 6σ improvement with respect to standard solar models, while being allowed by direct detection and collider limits. We provide full analytical capture expressions for q- and vrel-dependent scattering, as well as complete likelihood tables for all models.

Citation

Vincent, A. C., Serenelli, A., & Scott, P. (2015). Generalised form factor dark matter in the Sun. Journal of Cosmology and Astroparticle Physics, 2015(08), Article 040. https://doi.org/10.1088/1475-7516/2015/08/040

Journal Article Type Article
Acceptance Date Jul 31, 2015
Online Publication Date Aug 19, 2015
Publication Date Aug 31, 2015
Deposit Date Apr 23, 2019
Publicly Available Date Apr 23, 2019
Journal Journal of Cosmology and Astroparticle Physics
Publisher IOP Publishing
Peer Reviewed Peer Reviewed
Volume 2015
Issue 08
Article Number 040
DOI https://doi.org/10.1088/1475-7516/2015/08/040

Files

Published Journal Article (2.8 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Article funded by SCOAP. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.






You might also like



Downloadable Citations