Skip to main content

Research Repository

Advanced Search

The mass of the Milky Way from satellite dynamics

Callingham, Thomas M; Cautun, Marius; Deason, Alis J; Frenk, Carlos S; Wang, Wenting; Gómez, Facundo A; Grand, Robert JJ; Marinacci, Federico; Pakmor, Ruediger

The mass of the Milky Way from satellite dynamics Thumbnail


Marius Cautun

Wenting Wang

Facundo A Gómez

Robert JJ Grand

Federico Marinacci

Ruediger Pakmor


We present and apply a method to infer the mass of the Milky Way (MW) by comparing the dynamics of MW satellites to those of model satellites in the EAGLE cosmological hydrodynamics simulations. A distribution function (DF) for galactic satellites is constructed from EAGLE using specific angular momentum and specific energy, which are scaled so as to be independent of host halo mass. In this 2-dimensional space, the orbital properties of satellite galaxies vary according to the host halo mass. The halo mass can be inferred by calculating the likelihood that the observed satellite population is drawn from this DF. Our method is robustly calibrated on mock EAGLE systems. We validate it by applying it to the completely independent suite of 30 AURIGA high-resolution simulations of MW-like galaxies: the method accurately recovers their true mass and associated uncertainties. We then apply it to ten classical satellites of the MW with 6D phasespace measurements, including updated proper motions from the Gaia satellite. The mass of the MW is estimated to be MMW 200 = 1.17+0.21 −0.15 × 1012M (68% confidence limits). We combine our total mass estimate with recent mass estimates in the inner regions of the Galaxy to infer an inner dark matter (DM) mass fraction MDM(< 20 kpc)/MDM 200 = 0.12 which is typical of ∼1012M ΛCDM haloes in hydrodynamical galaxy formation simulations. Assuming an NFW profile, this is equivalent to a halo concentration of c MW 200 = 10.9 +2.6 −2.0.


Callingham, T. M., Cautun, M., Deason, A. J., Frenk, C. S., Wang, W., Gómez, F. A., …Pakmor, R. (2019). The mass of the Milky Way from satellite dynamics. Monthly Notices of the Royal Astronomical Society, 484(4), 5453-5467.

Journal Article Type Article
Acceptance Date Feb 4, 2019
Online Publication Date Feb 5, 2019
Publication Date Apr 21, 2019
Deposit Date Feb 6, 2019
Publicly Available Date Feb 6, 2019
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 484
Issue 4
Pages 5453-5467


Accepted Journal Article (1.1 Mb)

Copyright Statement
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.

You might also like

Downloadable Citations