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ABSTRACT
We present and apply a method to infer the mass of the Milky Way (MW) by comparing the dynamics
of MW satellites to those of model satellites in the EAGLE cosmological hydrodynamics simulations. A
distribution function (DF) for galactic satellites is constructed from EAGLE using specific angular momentum
and specific energy, which are scaled so as to be independent of host halo mass. In this 2-dimensional space,
the orbital properties of satellite galaxies vary according to the host halo mass. The halo mass can be inferred
by calculating the likelihood that the observed satellite population is drawn from this DF. Our method is
robustly calibrated on mock EAGLE systems. We validate it by applying it to the completely independent
suite of 30 AURIGA high-resolution simulations of MW-like galaxies: the method accurately recovers their
true mass and associated uncertainties. We then apply it to ten classical satellites of the MW with 6D phase-
space measurements, including updated proper motions from the Gaia satellite. The mass of the MW is
estimated to be MMW

200 = 1.17+0.21
−0.15 × 1012 M� (68% confidence limits). We combine our total mass estimate

with recent mass estimates in the inner regions of the Galaxy to infer an inner dark matter (DM) mass
fraction MDM(< 20 kpc)/MDM

200 = 0.12 which is typical of ∼1012 M� ΛCDM haloes in hydrodynamical
galaxy formation simulations. Assuming an NFW profile, this is equivalent to a halo concentration of cMW

200 =

10.9+2.6
−2.0.

Key words: methods: data analysis – Galaxy: halo – galaxies: haloes – galaxies: kinematics
and dynamics – galaxies: dwarfs

1 INTRODUCTION

The mass of the Milky Way (MW) is a fundamental astrophys-
ical parameter. It is not only important for placing the MW in
context within the general galaxy population, but it also plays
a major role when trying to address some of the biggest mys-
teries of modern astrophysics and cosmology. The intricacies of
galaxy formation are highly dependant on feedback and star for-
mation processes, which undergo a crucial physical transition
around the MW mass (e.g. Bower et al. 2017). Apparent dis-
crepancies with the standard ΛCDM model, such as the miss-
ing satellites (Klypin et al. 1999; Moore et al. 1999) and the too-
big-to-fail problems (Boylan-Kolchin et al. 2011) depend strongly
on the MW halo mass (e.g. Purcell & Zentner 2012; Wang et al.
2012; Vera-Ciro et al. 2013; Cautun et al. 2014a). In addition, tests
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of alternative warm dark matter models (Kennedy et al. 2014;
Lovell et al. 2014) are also subject to the total halo mass. Thus,
by considering the cosmological context of the MW and its popu-
lation of dwarf galaxy satellites, important inferences about large-
scale cosmology can be made. With the recent Gaia DR2 release
(Gaia Collaboration et al. 2018a), we now have significantly more
information than ever before about our galaxy, and are better placed
to make progress on these problems.

There have been many attempts to infer directly the MW
mass through a variety of methods. The total MW mass is dom-
inated by its dark matter (DM) halo, which cannot be observed
directly. Instead, its properties must be inferred from the proper-
ties of luminous populations, such as the luminosity function of
MW satellites (mostly the Large and Small Magellanic Clouds,
e.g. Busha et al. 2011b; González et al. 2013; Cautun et al. 2014b)
and the kinematics of various dynamical tracers of the Galactic
halo. The dynamics of halo tracers are mostly determined by the
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gravitational potential of the MW halo, and provide a key indirect
probe of the total halo mass. Examples of halo tracers used for
this purpose are satellite galaxies (e.g. Wilkinson & Evans 1999;
Watkins et al. 2010), globular clusters (e.g. Eadie & Harris 2016;
Binney & Wong 2017; Sohn et al. 2018; Watkins et al. 2018), halo
stars (e.g. Xue et al. 2008; Deason et al. 2012; Kafle et al. 2012,
2014), high velocity stars (e.g. Smith et al. 2007; Piffl et al. 2014;
Fragione & Loeb 2017; Rossi et al. 2017; Monari et al. 2018) and
stellar streams (e.g. Koposov et al. 2010; Newberg et al. 2010;
Gibbons et al. 2014; Küpper et al. 2015; Bowden et al. 2015).

There are a variety of methods for inferring the Galactic halo
mass using dynamical tracers. A common approach is to model the
tracers as distributions in equilibrium whose parameters are deter-
mined by fitting the model to observational data (e.g. Evans et al.
2003; Han et al. 2016a). Advances in the calculation of action-
angle coordinates (e.g. Vasiliev 2019) have led to a new generation
of analytical galaxy modelling, centred around distribution func-
tions (DFs) in action-angle space. Examples include modelling the
MW population of globular clusters (e.g. Posti & Helmi 2018) or
individual DFs of components such as the thick and thin disc, bulge,
stellar halo and DM halo (Cole & Binney 2017). The recent avail-
ability of large cosmological simulation has enabled a new class
of methods based on comparing the observed properties of MW
satellites to those of substructures in cosmological simulations (e.g.
Busha et al. 2011a; Patel et al. 2017).

Although over the past decades a large amount of effort has
been dedicated to inferring the Galactic halo mass, its value re-
mains uncertain to within a factor of two, with most mass estimates
ranging from 0.5 to 2.5 × 1012 M� (e.g. Wang et al. 2015, and our
Fig. 7). While many studies claim uncertainties smaller than this
range, the analytical models upon which they rely require several
assumptions such as dynamical equilibrium and a given shape of
the density or the velocity anisotropy profiles. These assumptions
can lead to additional systematic errors, which are difficult to quan-
tify but can be the dominant source of error (e.g. see Yencho et al.
2006; Wang et al. 2015, 2018). This is especially true for the MW
halo whose dynamics are likely to be affected by the presence of
a very massive satellite, the Large Magellanic Cloud (Gómez et al.
2015; Peñarrubia et al. 2016; Shao et al. 2018c). Furthermore, most
methods typically estimate the mass within the inner tens of kilo-
parsecs, since this is the region where most tracers (such as halo
stars and globular clusters) reside, necessitating an extrapolation to
the virial radius. This extrapolation requires additional assumptions
about the radial density profile of the MW and can lead to further
systematic uncertainties.

Large-volume high-resolution cosmological simulations offer
a unique test-bed for analytical mass determination methods (e.g.
Han et al. 2016b; Peñarrubia & Fattahi 2017; Wang et al. 2017)
and, importantly, enable new methods for inferring the Galactic
halo mass with a minimal set of assumptions. The simulations have
the advantage of self-consistently capturing the complexities of
halo and galaxy formation, as well as the effects of halo-to-halo
variation. However, with a few exceptions, the limited mass reso-
lution of current simulations means that they can resolve satellite
galaxies but not halo stars or globular clusters (although see e.g.
Pfeffer et al. 2018; Grand et al. 2018). This is not a major limita-
tion since satellite galaxies, due to their radially extended spatial
distribution, are one of the best probes of the outer MW halo. This
is especially true now that the Gaia DR2 release has provided a
large sample of MW satellites with full 6D phase space information
(Gaia Collaboration et al. 2018b; Fritz et al. 2018; Simon 2018).

Galactic halo mass estimates that rely on cosmological simu-

lations are relatively recent. Busha et al. (2011a) pioneered the ap-
proach of inferring halo properties by finding the best match be-
tween the MW satellites and satellites of simulated haloes. The
MW mass is then determined by weighting the host haloes ac-
cording to the quality of the satellite match, a technique known as
importance sampling. Busha et al. used the distance, velocity and
size of the Large and Small Magellanic Clouds (hereafter LMC
and SMC) to constrain the MW mass. The distance and velocity of
satellites can vary rapidly, especially when close to the pericentre
of their orbit, so very large simulations are needed in order to find
enough counterparts to the MW system.

Patel et al. (2017) pointed out that approximately conserved
quantities, such as angular momentum, are better for identifying
satellite analogues in simulations. This makes it easier to find MW
counterparts; applying the criterion to a larger number of satellites
results in a more precise mass determination (Patel et al. 2018). A
further advance was achieved by Li et al. (2017) who showed that,
when scaled appropriately, the DF of satellite energy and angular
momentum becomes independent of halo mass. This scaling allows
for a more efficient use of simulation data, since any halo can be
rescaled to a different mass, and thus a better sampling of halo for-
mation histories and halo-to-halo variation can be achieved. This
approach represents a major improvement over importance sam-
pling methods, in which the statistically relevant systems are those
in a small mass range.

In this paper we improve and extend the Li et al. (2017)
mass determination method. We start by constructing the phase-
space distribution of satellite galaxies using a very large sample
of host haloes taken from the EAGLE (Evolution and Assembly
of GaLaxies and their Environments) galaxy formation simulation
(Schaye et al. 2015; Crain et al. 2015). We then describe and cal-
ibrate three mass inference methods based on the satellite distri-
butions of: i) angular momentum only, ii) energy only, and iii) a
combination of both angular momentum and energy. We test these
methods by applying them to an independent set of simulations,
taken from the AURIGA project (Grand et al. 2017); this is a very
stringent test because of the much higher resolution and rather dif-
ferent galaxy formation model implemented in AURIGA compared
to EAGLE. Finally, we apply our methods to the latest observations
of the classical satellites to determine the MW halo mass; we are
able to estimate this mass with an uncertainty of only 20%.

The structure of the paper is as follows. Section 2 describes
the construction of the phase-space DFs using the EAGLE data. Sec-
tion 3 describes our mass inference methods, their calibration and
validation with tests on mock systems. In Section 4, we apply this
method to the observed MW system and discuss our results. Finally,
Section 5 summarises and concludes the paper.

2 CONSTRUCTION OF THE SATELLITE
DISTRIBUTION

We now describe how to obtain a phase space distribution of satel-
lites that, when scaled appropriately, is independent of host halo
mass. We then introduce the MW observations, and the simulation
data that we use for calculating the phase-space distribution func-
tion of satellite galaxies.

2.1 Theoretical background

We are interested in the energy and angular momentum distribution
of Galactic satellites. This can be calculated starting from the ob-
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served distance, r s , tangential velocity, vst , and speed, vs , of satel-
lite s, which we use to define the vector:

xs =
(
vs ,vst ,r

s
)
. (1)

The specific energy, E, and specific angular momentum, L, of a
satellite are given by:

E =
1
2
|v|2 + Φ (r)

L = |r × v | = rvt,

(2)

where Φ(r) is the gravitational potential at the position of the satel-
lite. This cannot be measured directly in observations, and to cal-
culate it we need to assume a mass profile for the host halo. Here,
we assume that the host density profile is well approximated by a
spherically symmetric Navarro, Frenk and White profile (hereafter
NFW; Navarro et al. 1996, 1997), whose gravitational potential is
given by:

ΦNFW (r) = −
GM200

r

ln
(
1 + C r

R200

)
ln (1 + C) − C

C+1

, (3)

where C is the concentration of the halo and M200 and R200 de-
notes the halo mass and radius, respectively. The mass, M200, cor-
responds to the mass enclosed within a sphere of average density
200 times the critical density.

The NFW profile provides a good description of the radial
density profile of relaxed haloes in DM-only simulations. The ad-
dition of baryons leads to a contraction of the inner region of
haloes, and thus to a systematic departure from an NFW profile
(e.g. Gnedin et al. 2004). However, at large enough distances (e.g.
r & 20 kpc for a halo mass of 1012 M� ) the NFW profile still
provides a very good description of the mass distribution even in
galaxy formation simulations (e.g. Schaller et al. 2015; Zhu et al.
2016). In this work, we consider only satellites relatively far from
the halo centre, where the NFW function represents a good approx-
imation of the mass profile.

DM haloes have several self-similar properties, such as their
density profiles (e.g. Navarro et al. 1996, 1997), the substruc-
ture mass function (e.g. Wang et al. 2012; Cautun et al. 2014a)
and the radial number density of subhaloes (Springel et al. 2008;
Hellwing et al. 2016). Li et al. (2017) showed that the same self-
similar behaviour also holds for the energy and angular momentum
distribution functions of subhaloes. This implies that, when scaled
accordingly, satellites around hosts of different mass follow the
same energy and angular momentum distribution. The same self-
similar behaviour also holds to a good approximation in the EAGLE

hydrodynamic simulation (see Appendix B).
For a self-similar halo density profile, the satellites’ positions

and velocities scale with M1/3
200 (Li et al. 2017). A given host halo

and its associated satellite system, can therefore be scaled to a dif-
ferent host halo mass, MScale

200 , as:

(
r′,v′,v′t

)
=


 MScale

200
M200




1
3

(r,v,vt) . (4)

This implies that the energy and angular momentum of satel-
lites also scale with halo mass through the relation E,L ∝ M2/3

200 .
Thus, we can choose characteristic E0 and L0 values for each halo
mass and use them to rescale the E and L values of each satellite
to obtain mass independent quantities. For each halo, we define the
scaled specific energy, Ẽ, and scaled specific angular momentum,

Table 1. Properties of the classical Galactic satellites used in this work. The
last two columns give the calculated energy and angular momentum val-
ues for each satellite. The energy has been calculated using an NFW profile
with a concentration of 8, for a mass, MMW

200 = 1.17 × 1012M� , which
corresponds to our best MW-halo mass estimate. The distance is with re-
spect to the Galactic Centre. The specific orbital angular momentum, L,
and specific energy, E , of the satellites are expressed in terms of the an-
gular momentum, L0; MW, and energy, E0; MW, of a circular orbit at the
virial radius, R200. For the mass and concentration assumed here, we have
L0; MW = 3.34 × 104 kpc km s−1 and E0; MW = 2.28 × 104km2 s−2. The
errors give the 68% confidence interval based on Monte Carlo sampling of
the observational errors (see text for details).

Satellite Distance [kpc] L/L0; MW E/E0; MW

LMC 51 ± 2 0.46+0.05
−0.05 −1.33+0.32

−0.31

SMC 64 ± 4 0.46+0.08
−0.08 −1.84+0.42

−0.37

Draco 76 ± 6 0.30+0.03
−0.03 −2.40+0.10

−0.11

Ursa Minor 76 ± 6 0.32+0.02
−0.01 −2.39+0.05

−0.05

Sculptor 86 ± 6 0.48+0.03
−0.03 −1.89+0.07

−0.07

Sextans 86 ± 4 0.67+0.06
−0.05 −1.21+0.17

−0.16

Carina 105 ± 6 0.55+0.08
−0.08 −1.86+0.19

−0.19

Fornax 147 ± 12 0.70+0.21
−0.19 −1.52+0.33

−0.30

Leo II 233 ± 14 0.96+0.30
−0.28 −1.20+0.29

−0.21

Leo I 254 ± 15 0.82+0.28
−0.26 −0.67+0.21

−0.15

L̃, as:(
Ẽ, L̃

)
=

(
E
E0
,

L
L0

)
, (5)

where the characteristic E0 and L0 values correspond to the energy
and angular momentum of a circular orbit at R200 and are given by:

E0 =
GM200

R200

L0 =
√

GM200R200.

(6)

This scaling relation preserves the relaxation state, concentration
and formation history of the halo, giving scaled properties that are
independent of host mass (see Appendix B).

2.2 Observational data for the MW satellites

We aim to estimate the MW halo mass using the classical satellites
since those have the best proper motion measurements. The method
we employ is flexible enough to incorporate the ultrafaint dwarfs;
however, the EAGLE simulation, which we use for calibration, does
not resolve the ultrafaint satellites. Furthermore, we discard any
satellites closer than 40 kpc (see section 2.3), so we exclude the
Sagittarius dwarf from our observational sample. Sagittarius is cur-
rently at a distance of 26 kpc, undergoing strong tidal disruption
by the MW disc, and is therefore unsuitable as a tracer of the DM
halo. This leaves 10 classical satellites with adequate kinematical
data (see Table 1).

We take satellite positions, distances and radial velocities from
the McConnachie (2012) compilation. We use the observed proper
motions of the classical satellites derived from the Gaia data re-
lease DR2 (Gaia Collaboration et al. 2018b), apart from the most
distant satellites, Leo I and Leo II, for which we use the Hub-
ble Space Telescope proper motions (Sohn et al. 2013; Piatek et al.
2016) since these have smaller uncertainties.
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To calculate the energy and angular momentum, we transform
the satellite positions and velocities from Heliocentric to Galacto-
centric coordinates using the procedure described in Cautun et al.
(2015). The transformation depends on the Sun’s position and ve-
locity for which we adopt: d = 8.29 ± 0.16 kpc for the distance
of the Sun from the Galactic Centre; Vcirc = 239 ± 5 km s−1 for
the circular velocity at the Sun’s position (McMillan 2011); and
(U,V,W ) = (11.1 ± 0.8,12.2 ± 0.5,7.3 ± 0.4) km s−1 for the Sun’s
motion with respect to the local standard of rest, (Schönrich et al.
2010). When transforming to Galactocentric coordinates we ac-
count for errors in the distance, radial velocity and proper motion of
each satellite, as well as in the Sun’s position and velocity, which
we model as normally distributed errors. To propagate the errors,
we generate a set of 1000 Monte Carlo realizations of the MW sys-
tem in heliocentric coordinates and transform each realization to
Galactocentric coordinates.

2.3 EAGLE simulation sample

We select our sample of host haloes and satellite populations
from the reference run of the EAGLE project (Schaye et al. 2015;
Crain et al. 2015). The simulation follows galaxy formation in a
100 Mpc cubic volume with the Planck cosmological parameters
(Planck Collaboration et al. 2014, see Table 9) using 15043 dark
matter particles of mass of 9.7 × 106 M� and 15043 gas particles of
initial mass of 1.81 × 106 M� . EAGLE models the relevant baryonic
physics processes such as gas cooling, stochastic star formation,
stellar and AGN feedback, and the injection of metals from super-
novae and stellar winds; it was calibrated to reproduce the present
day stellar mass function, galaxy sizes and the galaxy mass – black
hole mass relation. The population of haloes and subhaloes was
identified using the SUBFIND algorithm (Springel et al. 2001). The
large volume of the EAGLE simulation provides a large sample of
haloes, of a wide range of masses and assembly histories. Our final
sample consists of the following host haloes and satellites galaxies.

Selection criteria for hosts haloes:

(i) Halo mass, M200, in the range 1011.7 M� to 1012.5 M� ;
(ii) relaxed systems, that is haloes for which the distance be-

tween the centre of mass and the centre of potential is less than
0.07R200 and the total mass in substructures is less than 10%
(Neto et al. 2007).

Selection criteria of satellite galaxies:

(i) Distance from halo centre in the range 40 kpc < r′ <

300 kpc, where r′ = r (1012 M�/M200)1/3 is the rescaled dis-
tance of the satellite corresponding to a halo of mass 1012 M� (see
equation 4); this results in a similar radial distribution as the MW
satellites if the MW halo had a mass of 1012 M� ;

(ii) the satellite is luminous, i.e it contains at least one star par-
ticle, which excludes dark subhaloes.

This gives a sample of approximately ∼1,200 host haloes and
∼14,000 satellites. Our mass scaling method allows us to choose
haloes in a broad mass range. The restriction on the radial dis-
tribution of satellite galaxies is chosen so that the model samples
matches the observed one and to ensure that the potential is domi-
nated by DM.

In Fig. 1 we show the distribution of EAGLE satellites in scaled
energy and angular momentum space, (Ẽ, L̃). For each satellite, we
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Figure 1. The distribution, F (Ẽ, L̃), of bound EAGLE satellites in terms
of the scaled angular momentum, L̃, and scaled energy, Ẽ . The energy and
angular momentum are scaled according to equation (5) to obtain quantities
that are independent of host halo mass, M200. The colour gives the num-
ber density of satellites, with dark colours corresponding to higher number
densities (see colour bar). The two side panels show the one dimensional
distributions of the scaled energy FE (Ẽ ) (right-hand panel) and scaled an-
gular momentum FL (L̃) (top panel) of satellites.

calculate the energy by assuming that the host halo is well de-
scribed by an NFW profile individually fitted to each halo as de-
scribed in Schaller et al. (2015). This procedure is similar to how
energy is calculated for observational satellites, and thus allows for
a proper comparison between theory and observations. To obtain a
continuous DF, we applied a 2D Gaussian smoothing with disper-
sions ασ

L̃
and ασ

Ẽ
for the L̃ and Ẽ directions, respectively. The

symbols σ
L̃
= 0.36 and σ

Ẽ
= 0.52 denote the standard deviation

of the L̃ and Ẽ distributions, respectively. The parameter α = 0.125
was chosen as a compromise so as to obtain a locally smooth func-
tion without significantly changing the overall shape of the DF.

The distribution in (Ẽ, L̃) space is not uniform and satel-
lites are most likely to have values around the peak of the DF,
(Ẽ, L̃) ≈ (−1.5,0.5), which corresponds to the dark coloured re-
gion in Fig. 1. The (Ẽ, L̃) distribution is bounded on the lower right
hand side by circular orbits. Moving perpendicularly away from
this boundary, the orbits become increasingly radial. The Ẽ distri-
bution is bounded by the potential energy of the inner radial cut,
and the L̃ distribution is bounded by a circular orbit at the outer
radial cut. In our sample, approximately 1% of the satellites are
unbound, i.e. E > 0, which is consistent with previous studies
(Boylan-Kolchin et al. 2013). However, we note that we do not cal-
culate the exact binding energy of each satellite, but only an ap-
proximate value under the assumption that the host halo is spheri-
cally symmetric and well described by an NFW profile (see eq. 3).
While not shown in Fig. 1, we do keep unbound satellites in our
analysis and thus we make no explicit assumption that MW satel-
lites, such as Leo I, are bound. Instead, it is simply improbable that
Leo I is unbound, and this is reflected in the individual satellites
mass estimates we present in Section 4.

There are several advantages to obtaining a composite DF that
is averaged over many host haloes instead of calculating individual
distributions for each halo, as done by Li et al. (2017). In EAGLE,
the mass resolution limits the number of subhaloes that can be iden-
tified in each system. As a result, the satellite population of each
system represents a poor sampling of their haloes unique DF. The
total composite DF contains many possible halo histories, and their
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multiplicity effectively serves as a prior probability. With further
knowledge of the MW’s assembly history, it would be possible to
restrict the model sample to have similar assembly histories to the
MW. This could reduce the effective halo scatter and potentially
result in a more accurate mass estimate. However, in this work we
choose not be too restrictive.

3 METHOD

We present three different methods for inferring the mass of the
MW, each based on the following satellite properties: i) orbital an-
gular momentum, ii) orbital energy, and iii) both angular momen-
tum and energy. All three methods employ the same principles and
steps. We focus the discussion on the third method, which combines
both L and E, and which should give the best mass constraints since
it uses the largest amount of information. The methods we use are
based on the approach of Li et al. (2017), which we have modified
to work with a large sample of haloes and our mass independent
DF, F (Ẽ, L̃).

We are interested in determining the mass of a host halo start-
ing from the observed position and velocities of a set of NSat satel-
lites. Each satellite, s, has a set of observed phase-space coordi-
nates:

xs =
(
vs ,vst ,r

s
) {

xs
}
s∈[0,NSat] , (7)

consisting of the speed, v, the tangential velocity component, vt,
and the distance, r , from the host centre. These properties, com-
bined with assumptions about the mass, M200, and the density pro-
file of the host, are sufficient to calculate the energy and angular
momentum,

{
Ẽs , L̃s

}���M200
, of each satellite. Varying M200 gives a

path in the (Ẽ, L̃) plane for each satellite. As a function of M200,
L̃ scales as M−2/3

200 and so decreases asymptotically to zero for in-
creasing value of M200. The scaled energy, Ẽ, has two terms that
scale differently; the kinetic term scales as M−2/3

200 , while the poten-

tial term scales as M1/3
200 . With increasing M200, the potential term

dominates and Ẽ tends to −∞.
Fig. 2 illustrates the path of the Galactic satellites in the (Ẽ, L̃)

plane as we vary the assumed mass of the MW halo. For example,
as we increase the value of M200, the LMC dwarf moves from the
top part of the plot to the bottom-left corner. This is because both
L̃ and Ẽ decrease with increasing M200 values.

The trajectory of the satellites through the 2D plane depends
on the satellites’ orbital phase. The scaled angular momentum, L̃,
varies as a function of M200 uniformly throughout the orbit, but the
rate of change of the scaled energy, Ẽ, is dependent on the satel-
lites’ current radius. Nearer pericentre, the satellites have higher
absolute values of kinetic and potential energy components com-
pared to those at larger distances. When increasing M200, the scaled
kinetic energy decreases while the absolute value of the scaled po-
tential energy increases, causing the total scaled energy, Ẽ, to de-
crease rapidly and thus results in a more vertical trajectory. The
figure also illustrates that when the assumed M200 is very high, L̃
varies slowly and so the paths become nearly vertical.

Fig. 2 illustrates how the energy and angular momentum of
satellites can be used to determine the host halo mass. The DF in
(Ẽ, L̃) space is not uniform, and as the assumed M200 of the host
is varied, satellites move between regions of high and low number
density in this space. For example, the LMC falls in a high density
region for M200 ≈ 1.4 × 1012 M� , and in lower density regions for
higher or lower masses. Thus, the LMC phase space coordinates

0

1

2

3

Sc
al

ed
 E

ne
rg

y,
 E

M200/M
0.8 × 1012

1.0 × 1012

1.2 × 1012

5.0 × 1012

LMC
SMC
Draco
Ursa Minor
Sculptor

0.0 0.5 1.0 1.5 2.0
Scaled Angular Momentum, L

0

1

2

3

Sc
al

ed
 E

ne
rg

y,
 E Sextans

Carina
Fornax
Leo II
Leo I

Figure 2. The path of the Galactic satellites in scaled energy – angular mo-
mentum space, (Ẽ, L̃), when varying the MW halo mass, M200. Each curve
corresponds to a different satellite (see legend). The filled symbols show the
location corresponding to the four values of M200 given in the legend. The
energy has been calculated using an NFW profile with a concentration of 8.
The colour scheme is the same as in Fig. 1, with darker colours correspond-
ing to higher number densities.

would prefer a MW halo mass of ≈ 1.4 × 1012 M� . In contrast,
the Leo I path is nearest to the maximum density for M200 ≈ 2.9 ×
1012 M� , and suggests a higher MW mass.

We now describe how each satellite can be used to obtain a
likelihood for the MW halo mass, and how to combine the mass
estimates from various satellites. Our aim is to determine the like-
lihood, p(M200 |xs ), for the host mass given the observed xs prop-
erties of satellite s.

The likelihood can be calculated from the Ẽ distribution via

p(M200 |xs ) = FE (Ẽ)
∂Ẽ

∂M200

����Ẽ=Ẽ s
, (8)

where the FE (Ẽ) term denotes the DF, while the partial derivative
arises from the Jacobian of the transformation from Ẽ to host halo
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6 T. M. Callingham et al.

mass, M200. The same procedure can be used to estimate the host
mass using only the angular momentum by replacing FE (Ẽ) by the
L̃ distribution function, FL (L̃), and by changing the Ẽ derivative
term to L̃, to obtain:

p(M200 |xs ) = FL (L̃)
∂ L̃

∂M200

����L̃=L̃s
. (9)

This expression can be extended to the 2 dimensional case, where
we use both (Ẽ, L̃) to constrain the halo mass, via

p(M200 |xs ) = F (Ẽ, L̃) M200
∂Ẽ

∂M200

∂ L̃
∂M200

����Ẽ=Ẽ s ; L̃=L̃s
, (10)

where the additional M200 factor is needed to have the correct units.
Note that all the Ẽ and L̃ terms in Eqs. (8)-(10) are evaluated at the
point Ẽs ≡ Ẽ(xs ,M200) and L̃s ≡ L̃(xs ,M200). For a detailed
derivation of Eqs. (8)-(10) please see Appendix A.

In practice, we actually determine the logarithm of the mass,
log10(M200), since the resulting probability distribution function
(PDF) in log space is closer to a Gaussian. We determine the most
likely host mass as the mass that maximizes the likelihood — the
Maximum Likelihood Estimator (MLE) mass, MMLE

200 . As the un-
certainties, we take the 68% confidence limits corresponding to the
interval between the 16 and 84 percentiles of the mass PDF. As-
suming that the satellites are independent tracers, we can combine
the estimates for individual satellites to obtain an overall estimate
given a set of observations, {xs }. The combined likelihood is given
by:

p
(
M200 ��{xs } ) = NSat∏

s=1

p
(
M200 ��xs )

. (11)

The potential energy of satellites has a weak dependence on
the host halo concentration, which is an unknown quantity. We have
tested that the 10 satellites used here cannot, by themselves, place
any meaningful constraints on the concentration of the MW halo.
Thus, we proceed to marginalize over the unknown concentration:

p
(
M200 ��xs )

=

∫
p
(
M200 ��xs ,C )

p (C |M200 ) dC , (12)

where p(C |M200) denotes the distribution of concentrations for
haloes of mass, M200, found in the EAGLE simulation, which
we took from Schaller et al. (2015). In practice, we evaluate
p(M200 |x,C) using 15 evenly spaced values in the range C ∈

[5,20]. We note that the dependence on concentration is weak, so
our results are not affected by the choice of the distribution of con-
centrations (see Appendix C)

3.1 Observational errors

While we have perfect knowledge of the phase space coordinates,
{xs }, of EAGLE satellites, in order to apply the method to the MW
satellites we must consider the effects of observational errors. To
account for errors, we perform a set of 1000 Monte Carlo realiza-
tions that sample the observational uncertainties (see Section 2.2
for a detailed description of the procedure). This produces a Monte
Carlo sample of allowed phase-space coordinates for each satellite.
We first determine the MW mass likelihood for each Monte Carlo
realization, and then we average the likelihood of all the Monte
Carlo samples. In the limit of a large number of Monte Carlo sam-
ples, this is equivalent to marginalizing over the observational er-
rors.

0.4 0.2 0.0 0.2 0.4
= log10(MMLE

200 / MTrue
200 )

0
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F

Inference method
E and L
only E
only L

Figure 3. The distributions of the ratio of MLE estimate, MMLE
200 , to the true

halo mass MTrue
200 , from each of our three inference methods. The results

were obtained by applying each mass determination method to a sample
of ∼ 600 systems from the EAGLE simulation. The vertical dotted lines
indicate the median of each distribution, which represents the bias, b, of
each method. For subsequent results, we correct the mass estimates by the
bias of each method and we denote the corresponding mass by MEsti

200 .

3.2 Method calibration using EAGLE

To provide a robust mass estimate of the MW halo, we now explore
the accuracy of our methods using tests on mock satellite systems.
Since MLE estimates can be biased, we first calibrate the inference
methods using a large sample of EAGLE systems. Then, in Section
3.3, we validate the methods on an independent, higher resolution
set of simulations taken from the AURIGA project.

To calibrate the three mass determination methods we start by
applying them to the EAGLE simulations. We select the same EA-
GLE haloes as in Section 2.3, that is haloes of total mass ∼1012 M� ,
and keep only those which contain at least 10 luminous satellites
within the distance range quoted in Section 2.3. There are ∼600
haloes satisfying the selection criteria. We then apply each mass
determination method to each EAGLE system to obtain the MLE
mass, MMLE

200 of that system. The results are shown in Fig. 3, where
we compare the MLE masses to the true total halo mass, MTrue

200 .
The performance of each method may be quantified by the ratio,
γ = log10

(
MMLE

200 /MTrue
200

)
, for each EAGLE system. The median

and scatter of the γ distribution give the bias and typical uncer-
tainty of the method, respectively.

Fig. 3 shows that our three methods have only small biases
compared to their dispersion. The (E,L) and the E only methods
have a slight bias with the median of the γ distribution being −0.01,
while the method based on L only has an bias of +0.02. A consis-
tently biased estimate is not a problem since it can easily be cor-
rected to obtain an accurate result. The bias-corrected mass esti-
mate, MEsti

200 , is given by:

log10
(
MEsti

200

)
= log10

(
MMLE

200

)
− b . (13)

The dispersion of the γ distributions in Fig. 3 reflects the
true precision of the method, σTrue. Mass estimates based only on
the angular momentum have the largest dispersion, σTrue = 0.15,
while both E and (E,L) methods have the same precision, σTrue =

0.09. Thus, most of the mass information is contained in the satel-
lites’ orbital energy. Adding angular momentum data hardly im-
proves the mass estimates, indicating that L does not contain sig-
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Mass of the MW from satellites 7

nificant information about the host mass beyond the information
already contained in the satellites’ energy.

Another important point to consider is the confidence interval
to be associated with each mass measurement. One possibility is
to take the dispersion of γ (see Fig. 3), but this suffers from the
limitation of assigning the same error to all mass measurements.
In practice, the mass of some host haloes can be more precisely
determined than the mass of others, and the confidence limits do
not need to be symmetrical around the MLE value (e.g. see Fig. 4).
Thus, the approach of assigning a single error to all measurements
is not optimal.

An alternative is to consider the error estimates of the
Bayesian method. These should be accurate, except for the effects
of an assumption implicit in our method, that all satellites are in-
dependent tracers. For example, satellites can fall in groups or fil-
aments, which might result in correlated energy and angular mo-
mentum amongst two or more satellite galaxies. For the brightest
10 satellites, the ones considered here, only a small fraction is ex-
pected to have fallen in groups (e.g. Wetzel et al. 2015; Shao et al.
2018b) and, in any case, interactions with other satellites and with
the host halo and galaxy are expected to decrease any phase-space
correlations present at the time of accretion (e.g. Deason et al.
2015; Shao et al. 2018a). Thus, we would generally expect the as-
sumption of independent tracers to be reasonable. We have checked
how realistic the Bayesian error estimates are and found them to be
roughly the same as the uncertainties shown in Fig. 3. The same
will not hold true in future studies when the method will be applied
to much larger numbers of satellites (see discussion in Section 4.3).

3.3 Tests with the AURIGA simulations

In this section we test our mass inference methods by applying
them to model galaxies from the AURIGA project. AURIGA is a
suite of high-resolution, hydrodynamical zoom-in simulations of
MW-like systems. We consider the 30 level 4 systems, which have
dark matter and gas mass resolution ∼30 times higher than EAGLE

(see Grand et al. 2017 for details). AURIGA makes for a perfect test
suite since it has higher resolution, uses a different hydrodynamics
code and includes a different galaxy formation model than EAGLE.
Thus, by applying our inference methods to these completely in-
dependent simulations, we can assess our methods’ accuracy and
quantify any systematic biases that may have been introduced by
calibrating our methods on the EAGLE simulations.

For each AURIGA galaxy, we identify the brightest 10 satellites
galaxies at a distance between 40 and 300 kpc from the halo centre.
These objects represent our mock observational sample of the MW-
like satellite systems. We then apply the (E,L) mass determination
method to each of the 30 AURIGA systems.

Fig. 4 shows the ratio of estimated to true masses, as well as
the associated uncertainties for each AURIGA galaxy. We find that
for 19 out of the 30 systems, or 63%, the estimated mass agrees
with the true value to the 68% confidence interval, approximately
as expected from the statistics. This performance is very good es-
pecially when taking into account that around a third of the AU-
RIGA systems are unrelaxed (see Sec. 2.3 for relaxation criteria).
We have checked that the other two methods, using only L and
only E, are similarly successful. This test demonstrates the accu-
racy of our method for determining halo masses and confirms that
our error estimates are realistic and robust.
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Figure 4. Test of the energy – angular momentum halo mass inference
method on 30 MW-mass galaxies from the AURIGA galaxy formation simu-
lation project. We show the ratio between the estimated, MEsti

200 , and the true,
MTrue

200 , halo masses for each AURIGA system. Note that MEsti
200 includes the

bias correction determined from the EAGLE mock catalogues (see equa-
tion 13). The errorbars correspond to the estimated 68% confidence limit.
The AURIGA simulations have much higher resolution and assume different
galaxy formation models than EAGLE, and thus provide a rigorous test of
the mass inference method. Most mass estimates agree with the true values
within the 68% confidence limit, in very good agreement with statistical
expectations.

Table 2. The MW halo mass, MMW
200 (the mass enclosed within a sphere of

average density 200 times the critical density) estimated from each classi-
cal satellite (except Sagittarius), and the combined overall result. The table
gives mass estimates using: (i) only the angular momentum, L; (ii) only the
energy, E: and (iii) both E and L. We quote 68% confidence limits.

MMW
200 [1012M� ]

Satellite only L only E E and L

LMC 0.98+1.78
−0.51 1.23+0.65

−0.25 1.35+0.76
−0.28

SMC 0.98+1.84
−0.52 0.93+0.61

−0.31 1.00+0.68
−0.32

Draco 0.51+0.94
−0.26 0.4‘+0.39

−0.09 0.42+0.43
−0.08

Ursa Minor 0.56+1.03
−0.29 0.40+0.40

−0.09 0.42+0.43
−0.09

Sculptor 1.02+1.88
−0.52 0.74+0.66

−0.15 0.76+0.74
−0.14

Sextans 1.70+3.09
−0.87 1.35+1.01

−0.29 1.41+1.12
−0.28

Carina 1.29+2.34
−0.69 0.74+0.83

−0.24 0.69+1.02
−0.21

Fornax 1.86+3.63
−1.08 1.12+1.68

−0.52 1.10+1.78
−0.52

Leo II 3.02+5.63
−1.86 1.91+4.32

−1.01 2.04+3.17
−1.11

Leo I 2.40+4.61
−1.49 3.09+6.45

−1.16 2.88+3.43
−1.06

Combined 1.20+0.42
−0.27 1.10+0.21

−0.14 1.17+0.21
−0.15

4 MILKY WAY MASS ESTIMATES

We now apply our mass estimation methods to data for the 10 MW
satellites that satisfy our selection criteria. We begin by obtaining
the Galactic halo mass likelihood from each satellite and corre-
sponding uncertainties (calculated with the Monte Carlo sampling
technique described in Section 3.1). The PDFs of the MW halo
mass, M200, obtained from each satellite’s data using the (E,L)
method are shown in Fig. 5; the best estimates and associated 68%
confidence intervals are given in Table 2.
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Figure 5. The MW halo mass, MMW
200 , inferred from the energy and orbital

angular momentum of each classical satellite (except Sagittarius). The thick
line shows the inferred MW halo mass, MMW

200 = 1.04+0.23
−0.14 × 1012M�

(68% confidence limit), obtained by combining the 10 individual estimates.
The inferred MMW

200 values and their corresponding errors are given in Ta-
ble 2.
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Figure 6. Comparison of the MW halo mass inferred using the three meth-
ods studied here. The methods use the following satellite data: (i) only the
angular momentum, L; (ii) only the energy, E; and (iii) both E and L. The
mass estimates and their errors are given in Table 2.

Individually, the satellites give a wide range of total masses
for the MW. For example, Ursa Minor and Draco favour a very low
mass, M200 ≈ 1011.6 M� , which is because both of them have
very low total specific energies (see Table 1). At the other extreme,
Leo I has the highest total energy and favours a halo an order of
magnitude more massive, M200 ≈ 1012.5 M� . However, the mass
estimate from any one satellite has a broad distribution and does
not provide a strong constraint on the MW mass. The true power of
the method comes from combining the mass likelihoods from each
satellite; the combined result is shown as a thick line in Fig 5. The
combined estimate for the MW halo mass is MMW

200 = 1.17+0.21
−0.15 ×

1012 M� .
Fig. 6 compares the Galactic halo mass determination using

the three methods introduced in this study. We find very good
agreement amongst the three, with all of them having a very large
overlap (see Table 2 for the actual values and their uncertainties).
Of the three, the method based on angular momentum only is the
most uncertain and, of the remaining two, the one based on energy

only gives a slightly lower uncertainty. As we saw in Fig. 3, adding
L data to E data does not produce an improvement in the mass
determination, which is what we find here too. In fact, the (E,L)
method seems to have slightly larger uncertainties than the E-only
method; however, the difference is very small and not statistically
significant. We also find that the estimated uncertainties in the MW
mass determination are similar to the ones shown in Fig. 3, where
we tested the methods on the EAGLE simulations. As we will see in
Figures 10 and 11, the uncertainties in the mass are dominated by
the small number of satellites, not by their proper motion errors.

It is important to consider possible systematics that may af-
fect our mass determination. For example, the LMC and SMC are
believed to have fallen in recently as a pair (e.g. Kallivayalil et al.
2013), and might not encode independent information about the
MW halo. We have checked that discarding the SMC from our
analysis does not significantly change the median estimate and
leads only to a small increase in the uncertainty range. We also
know that the classical satellites are atypical in at least two re-
spects: they currently reside in a thin plane, with several orbit-
ing preferentially within it, and they have a very low velocity
anisotropy. These two properties place the MW satellite system in
the tail of the ΛCDM expectations (e.g. see Pawlowski et al. 2014;
Cautun et al. 2015; Cautun & Frenk 2017). The analysis described
in Appendix D shows that the distribution of E and L values of the
Galactic satellites is, in fact, consistent with ΛCDM predictions,
with no evidence for any tension.

4.1 Comparison to previous MW mass estimates

In Fig. 7 we compare our total MW halo mass estimate with a selec-
tion of results from previous studies. This figure is an update of Fig-
ure 1 in Wang et al. (2015) and includes recent estimates, especially
those that use Gaia DR2 data. Some mass determination meth-
ods, such as ours and those based on Local Group dynamics (e.g.
Li & White 2008; Peñarrubia et al. 2016) and satellite dynamics
(e.g. Watkins et al. 2010; Boylan-Kolchin et al. 2013; Barber et al.
2014; Eadie et al. 2015), give the total mass directly, but many
others, such as those using globular clusters (e.g. Posti & Helmi
2018; Watkins et al. 2018) or halo stars (e.g. Xue et al. 2008;
Gnedin et al. 2010; Deason et al. 2012; Huang et al. 2016), give the
enclosed mass only within an inner region of the MW halo and re-
quire an assumption about the MW halo mass profile for extrapo-
lation to the total mass. Despite the wide range of values quoted in
the literature, our result is consistent within 1σ with the majority of
previous mass estimates. Our errors are significantly smaller than
those of most previous estimates and, most importantly, we have
rigorously and extensively tested our method on simulated galax-
ies to produce an accurate, unbiased mass estimate with realistic
uncertainties.

Our estimated value of ∼1012 M� for the MW halo mass
has important implications for the interpretation of the satellite
population of our galaxy, which is often used as a testbed for
the ΛCDM model. For example, the “too-big-to-fail" problem
(Boylan-Kolchin et al. 2011), which refers to the number of mas-
sive, dense satellites in the MW halo, is significantly alleviated. In-
deed, Wang et al. (2012) showed that approximately 40% of haloes
with mass Mhalo ∼ 1012 M� in ΛCDM dark matter only simu-
lations have three or fewer subhaloes with Vmax > 30 km/s (the
threshold used by Boylan-Kolchin et al. 2011 to define massive
failures). For the MW halo mass that we infer, the “too-big-to-fail
problem” is not a failure of ΛCDM.

An accurate estimate of the MW halo mass is also crucial in
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Figure 7. Comparison of our inferred MW halo mass with a selection of previous estimates. The vertical line and the shaded region show our M200 estimate
and its 68% confidence limit. The remaining symbols show previous estimates (see legend), with the horizontal lines corresponding to the quoted 68%
confidence limits. The results are grouped according to the methodology employed (see vertical axis). We give the mass, M200, contained within R200 (the
radius enclosing a mean density equal to 200 times the critical density). Some of the previous estimates were converted to M200 by assuming an NFW profile
and the mean concentration predicted for that mass.

order to address properly the missing satellites problem. The to-
tal number of subhaloes depends strongly on the halo mass (dou-
bling the halo mass, roughly doubles the number of subhaloes).
Thus, when appealling to baryonic physics solutions to this prob-
lem, such as the influence of reionization and stellar feedback, an
accurate estimate of the halo mass is a pre-requisite for a realis-
tic model. Moreover, when the halo mass is known, the number of
subhaloes may even inform us about these critical processes, such
as when the epoch of reionization occured (see e.g. Figure 1 in
Bose et al. 2018), or indeed about the identity of the dark matter
(Kennedy et al. 2014; Lovell et al. 2014).

4.2 The concentration of the MW halo

Alongside mass, the other fundamental property of DM haloes
is their concentration. Besides being one of the key parameters
of the NFW profile, the concentration encodes crucial informa-
tion about the halo’s formation history (e.g. Wechsler et al. 2002;
Lu et al. 2006; Ludlow et al. 2014) and, after halo mass, is the most
important property for determining how galaxies populate haloes
(e.g. Matthee et al. 2017). Our MW halo mass estimate does not
depend on, nor constrain, the MW halo concentration. However,

when combined with mass estimates for the inner regions of the
Galaxy, we can use our mass estimate to infer the concentration of
the MW halo. For this, we use inner mass determinations based on
the dynamics of the globular cluster population. This population is
much more radially concentrated than the satellite galaxy popula-
tion, and there is a large number of globular clusters with precise
Gaia DR2 proper motion measurements (Gaia Collaboration et al.
2018a). This enabled Posti & Helmi (2018) and Watkins et al.
(2018) to estimate the total mass enclosed within ∼20 kpc from
the Galactic Centre with high precision.

To determine the concentration we assume that the DM distri-
bution follows the NFW profile, which provides a very good fit to
the DM density profiles in both DM-only and hydrodynamic simu-
lations. To determine the enclosed DM mass, we subtract the MW
baryonic mass, Mbaryons

MW , from the total mass measurements within
both 20 kpc and R200. We use the McMillan (2017) estimates: a
stellar mass of 5.4 × 1010 M� and a gas mass of 1.2 × 1010 M� ,
which corresponds to Mbaryons

MW = 6.6 × 1010 M� .
Fig. 8 shows the fraction of DM mass enclosed within 20 kpc

of the centre as a function of the halo concentration; the solid
lines and shaded regions indicate the inferred concentrations and
their 68% confidence ranges. The Posti & Helmi (2018) estimate
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Figure 8. The concentration of the MW halo inferred by combining our to-
tal mass estimate with previous inner mass estimates. The solid thick curve
shows the dark matter (DM) mass fraction, MDM (< 20 kpc)/MDM

200 , con-
tained within 20 kpc of the halo centre as a function of concentration, C , for
our best estimate of a total halo mass of MDM

200 = 1.11 × 1012M� . The two
horizontal lines correspond to the Posti & Helmi (2018) and Watkins et al.
(2018) inner mass estimates. The inferred concentrations are shown by
the two vertical lines, with the shaded regions corresponding to the 68%
confidence ranges. We find C = 10.9+2.6

−2.0 and C = 11.8+5.1
−3.8 for the

Posti & Helmi and Watkins et al. inner mass estimates, respectively.
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Figure 9. The distribution of the DM mass fraction contained within 20 kpc
of the halo centre, MDM (< 20 kpc)/MDM

200 , for MW-sized galaxies in EA-
GLE and AURIGA. The red line shows the distribution of systems from our
EAGLE sample described in Section 2.3, whose M200 is within 0.2 dex of
our MW mass estimate. The blue histogram gives the distribution of the
30 level 4 AURIGA systems described in Section 3.3. The thick black line
shows the MW’s DM mass fraction; calculated using our own MW halo
mass estimate, MDM

200 , and MDM (< 20 kpc) from Posti & Helmi (2018).

gives a mass ratio, MDM(< 20 kpc)/MDM
200 ≈ 0.12, which corre-

sponds to a concentration of C = 10.9+2.6
−2.0 (68% confidence lim-

its), where the errors were calculated by Monte Carlo sampling of
the uncertainties associated with the inner and total mass estimates.
The same analysis for the Watkins et al. (2018) inner mass esti-
mate gives MDM(< 21.1 kpc)/MDM

200 ≈ 0.20, and a concentration,
C = 11.8+5.1

−3.8. To include the Watkins et al. result in Fig. 8, we
rescaled their mass estimate to a fiducial distance of 20 kpc.

We find that the MW halo has a high concentration for its

mass, with a most likely value of C ∼ 10.9, which could suggest
that the MW halo assembled early. The high MW halo concentra-
tion is supported by other studies; for example, the best fit Galaxy
model of McMillan (2017) gives C = 16 ± 3. In the EAGLE simu-
lations, the median concentration of a ∼1012 M� halo is ∼8.2 and
only ∼23% of haloes have a concentration higher than 10.9 which
suggests that the MW halo is an outlier.

However, the presence of central baryonic components causes
a contraction of the very inner region of ∼1012 M� mass haloes, in-
creasing the total mass in the inner region. As a result, the inner re-
gion is not well described by an NFW profile, and the inferred con-
centration is biased high (e.g. Schaller et al. 2015). To overcome
this limitation, in Fig. 9 we compare the inner DM mass fraction of
the MW to that of similar mass haloes in the EAGLE and AURIGA

simulations and find that the MW is typical of haloes in both simu-
lations. The systematic difference between the EAGLE and AURIGA

distribution reflects the stellar mass content of those objects: com-
pared to abundance matching results, galactic mass haloes in EA-
GLE have stellar masses that are too low, while equal mass haloes
in AURIGA have stellar masses that are too high.

4.3 Improving the mass estimate

In this section we discuss the limitations of our method and ways
of improving the MW mass estimate. There are two main sources
of uncertainty: statistical, from the finite number of satellites; and
systematic, from halo-to-halo variation. The former can be reduced
by increasing the number of dynamical tracers and/or reducing ob-
servational errors, but the latter cannot be reduced.

We begin by investigating the effect of observational errors
on the MW halo mass determination. The main source of observa-
tional uncertainties are the proper motion measurements. As such,
we consider the effect of varying the errors, σs

µα and σs
µδ , as-

sociated with the two components of the proper motion. For the
MW observations these errors vary from satellite to satellite, from
0.005 mas/year for Sculptor to 0.039 mas/year for Leo II, with a
median of ∼0.018 mas/year. For simplicity, here we assume the
same error for all satellites, that is σs

µα = σs
µδ = σµ , and study

the effect of observational errors by varying σµ . For each σµ value,
we proceed by taking the current proper motions of each MW satel-
lite and resetting their errors to the target value of σµ . Then, we
generate a sample of Monte Carlo realizations using the procedure
described in Section 2.2 and apply the mass estimation method.

Fig. 10 shows the MW halo mass estimate inferred from the
(E,L) method as a function of the size of the proper motion errors,
σµ . As we increase σµ , we find, as expected, that the uncertainty in
the mass determination increases. However, the current proper mo-
tion errors for the classical satellites are so small that they fall in the
region where there is hardly any dependence of the mass estimate
on σµ . Improving the current observational errors will provide lit-
tle improvement on the mass estimate.

More importantly, we also find a systematic shift in the es-
timated halo mass, which increases rapidly with the size of the
proper motion errors. For example, for σµ ≈ 0.35 mas/year, the es-
timated mass is a factor of two too high. This comes about because
large proper motion errors bias the observed velocities high, thus
leading to higher energy and angular momentum values, which, in
turn, lead to higher mass estimates. This is not a problem for our
current estimate since all the classical satellites have proper mo-
tions errors well below 0.1 mas/year, and thus lie in the region
where the mass estimate is flat. However, were we to include in
the sample ultrafaint dwarf satellites, many of which have large
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Figure 10. The estimated MW halo mass, MMW
200 , as a function of the size of

proper motion errors, σµ . Results are shown only for the inference method
based on both Ẽ and L̃ values. The solid line gives the mass estimate while
the shaded region shows the 68% confidence interval. Larger values of σµ
result in more uncertain mass estimates and also in a systematic bias with
respect to the true mass. The red arrow shows the median error for our
sample of classical satellites.
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Figure 11. The 1σ uncertainty,σlog10 M , with which we can determine the
logarithm of the halo mass as a function of the number of satellite galaxy
tracers, Ntracers, included in the sample. We show the mean uncertainty for
a large number of EAGLE haloes whose mass was determined using the E

and L values of their most massive Ntracers satellites. The right-hand axis
shows the percentage errors in M200 corresponding to the σlog10 M values.
The blue line gives the results using the satellites of EAGLE galaxies. The
red line gives the results from idealised cases of independent satellite tracers
(see main text) and represents the statistical limit of our method. The two
grey lines show the best fitting curves using Eq. (14).

proper motion errors (e.g. Fritz et al. 2018), then we would need
to account for the additional bias introduced by the observational
errors.

The MW is predicted to have approximately 125 satellites
brighter than MV = 0, of which just over 50 have already been dis-
covered (Newton et al. 2018). This means that, in principle, many
more satellites can be used to determine the MW halo mass, poten-
tially with a smaller uncertainty. Fig. 11 quantifies how the uncer-
tainty in halo mass is reduced as the number of satellite galaxies in
the sample increases. Here, we consider the simplified case where
there are no observational errors and focus only on the variation
arising from the number of tracers, NTracers.

Using the same sample of EAGLE main haloes as in Sec-
tion 2.3, we determine the host halo mass using the most massive

NTracers subhaloes. To obtain large enough tracer counts in EAGLE,
we relax the criteria and consider not only luminous satellites, but
also dark subhaloes. Many of these would be the hosts of the ultra-
faint dwarfs, but EAGLE lacks the resolution to populate them with
stars. However, these dark substructures are well resolved and their
orbital properties are reliable. To estimate an average error for each
value of NTracers, we calculate the dispersion in the distribution of
log10(MEsti

200 /M
True
200 ): the logarithm of the ratio of estimated to true

mass. To ensure accurate measures of the average error, we require
at least 100 systems that have NTracers or more tracers; this limits
our analysis to Ntracers ≤ 72.

The blue line in Fig. 11 shows that the expected error in our
mass estimate, σlog10 M , decreases as the number of tracers in-
creases. We would expect that above a certain number of tracers,
the mass determination does not improve any more because the er-
ror becomes dominated by halo-to-halo variation and systematic ef-
fects such as correlations between the kinematics of different satel-
lites (see e.g. Wang et al. 2017, 2018).

To investigate these effects, we construct idealised systems by
selecting NTracers satellites from our samples’ DF, F (Ẽ, L̃), and
then scale them to the mass of random host haloes selected from
our sample. This gives us a population of systems whose satel-
lites are perfectly described as being independently drawn from
our distribution. As an additional advantage, we are not limited to
NTracers ≤ 72, and can continue increasing NTracers as σlog10 M

asymptotes to zero (Fig. 11, red line). The difference between the
errors in the two samples is the error due to halo-to-halo scatter,
σScatter. The dependence of the total error, σlog10 M , on NTracers
can be modelled as (cf. Li et al. 2017):

σ2
log10 M =

σ2
Stat

NTracers
+ σ2

Scatter . (14)

The mass error for the true EAGLE satellite systems is best
fitted by σStat = 0.29 and σScatter = 0.03, while the error for
the idealized systems of independent tracers is best described by
σStat = 0.24 and σScatter = 0.01. We note that a scatter error,
σScatter = 0.03, equates to an accuracy limit of around 5% and
would represent the best mass measurement of the method in the
limit of a very large number of tracers. For 10 satellite tracers we
obtain a ∼ 20% uncertainty, similar to our MW mass estimate,
while the idealised mass estimates give a slightly smaller uncer-
tainty of ∼ 16%. The fits suggest that a ∼ 10% determination
of the MW mass is achievable by applying our method to around
Ntracers ≈ 60 tracers. The accuracy of our halo mass measurement
could be further improved by considering the dependence of the
satellite dynamics on the properties and assembly history of the
host halo. It is conceivable that by restricting the analysis to a sub-
set of haloes that more closely resembles the MW, such as haloes
with a similar assembly history, the halo-to-halo variation could be
reduced, leading to an even more precise halo mass determination.
However, at present, the largest benefit would accrue from increas-
ing the number of tracers.

5 CONCLUSIONS

We have developed a method to determine the total mass of the
Milky Way (MW) dark matter (DM) halo by comparing the energy
and angular momentum of MW satellites with the respective dis-
tributions predicted in the EAGLE galaxy formation cosmological
simulations. When scaled appropriately by host halo mass, the en-
ergy and angular momentum of the satellites become independent
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of the host halo mass (see Fig. B1). Thus, we can use a large sam-
ple of EAGLE haloes, and associated satellites, in our estimate of
the MW halo mass. For this, we constructed the satellite distribu-
tion function in (E,L) space from the simulations and carried out a
maximum likelihood analysis to infer the halo mass from the phase-
space properties of the ten brightest satellite galaxies (excluding
the disrupting Sagittarius galaxy). Using mock samples from EA-
GLE we analysed the performance of the method and quantified its
statistical and systematic uncertainties.

A key test of our method was to apply it to estimate the masses
of the DM haloes of 30 MW analogues simulated in the AURIGA

project. These simulations have much higher resolution and employ
different baryonic physics models than EAGLE. They produce real-
istic MW-like galaxies (Grand et al. 2017, 2018) and thus provide
a rigorous and completely independent external test of our method.
We find that our method provides an unbiased estimate of the total
halo masses of the AURIGA galaxies, with a precision of ∼ 16%, in
very good agreement with the expectations from the EAGLE simu-
lations.

Our main conclusions are:

• Applying our method to ten classical MW satellites gives an
estimate for the total mass of the MW halo of MMW

200 = 1.17+0.21
−0.15 ×

1012 M� . This result agrees well with most previous estimates in
the literature but with a rigorously tested accuracy (∼15%) which
is better than most other estimates.
• Combining our total DM halo mass estimate with recent esti-

mates of the halo mass within 20 kpc gives an inner DM mass frac-
tion, MDM(< 20 kpc)/MDM

200 ≈ 0.12. Assuming that the MW halo
follows an NFW profile, we have inferred a Galactic concentra-
tion, C = 10.9+2.6

−2.0. This is higher than typical EAGLE haloes with
masses of 1012 M� , which have a median concentration of 8.2, with
only ∼23% of them having concentrations of 10.9 or higher. The
discrepancy likely reflects that an NFW profile is not a good de-
scription of the inner region since the Galactic halo has contracted
due to the baryonic components. In fact, when comparing the in-
ner DM mass fraction of the MW against the EAGLE and AURIGA

simulations, our galaxy is typical of similar mass haloes.
• Our halo mass estimate can be improved by increasing the

number of halo tracers and/or reducing the observational uncertain-
ties. We found that the observed proper motions of the ten classical
satellites are already so precise that further improvement will make
little difference to the halo mass estimate. Increasing the number
of satellites, on the other hand, for example by including the ∼50
currently known satellites in the MW, would reduce the mass errors
to ∼11%. Further improvements would be possible by analysing all
∼125 satellites that are predicted to reside in the MW (Newton et al.
2018), which would result in a ∼8% mass uncertainty, a factor of
two improvement over our current estimate.

In summary, our MW halo mass estimate is precise and ac-
curate and has been thoroughly tested on realistic model galaxies
and their satellite populations. Mass estimates that rely on cosmo-
logical simulations are relatively new but the use of simulations
enables a robust and testable methodology. Indeed, the accuracy
we are now able to achieve (∼ 15− 20%; see also Patel et al. 2018)
is a significant step forward from the factor of two uncertainty that
has plagued MW mass estimates for years. This theoretical boost,
coupled with the exquisite 6 dimensional data that Gaia and com-
plementary facilities are now providing, brings us closer to what
may be called the era of “precision” near-field cosmology — when
we can go beyond rough estimates of the MW halo mass and, in-

stead, remove this important degree of freedom when making use
of the properties of the MW to inform cosmological models and
dark matter theories.
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APPENDIX A: PROBABILITY DISTRIBUTIONS

Here we give a short summary on how to calculate the PDF of one
variable that is a function of one or more variables with known
PDFs. In our case, we want to know the PDF of M200 given the
distributions of either scaled angular momentum, scaled energy, or
both scaled angular momentum and energy.

The PDF, p(u), of a variable u which is a function of x, is
given by:

p(u) = p(x)
�����
dx
du

����� , (A1)

where p(x) is the probability of variable x and where the derivative
corresponds to the Jacobian of the transformation. In our case, the
variable u corresponds to the host halo mass, M200, while x cor-
responds to either the scaled angular momentum, L̃, or the scaled
energy, Ẽ. Replacing these variables into Eq. (A1), we obtain Eqs.
(8) and (9), that is:

p(M200 |xs ) = FE (Ẽ)
∂Ẽ

∂M200

����Ẽ=Ẽ s
, (A2)

p(M200 |xs ) = FL (L̃)
∂ L̃

∂M200

����L̃=L̃s
. (A3)

To constrain M200 using both Ẽ and L̃ we can extend Eq. (A1)
to the two-dimensional case. However, doing so entails some very
involved calculations. We bypassed this step by combining the two
one-dimensional cases to infer the two-dimensional expression. If
the Ẽ and L̃ variables would be independent then we could just
multiply the right-hand side terms of Eqs. (A2) and (A3). However,
that is not the case, so we need to take the joint probability, F (Ẽ, L̃).
Furthermore, we also need to obtain the correct units, which we
achieve by adding an extra M200 factor. Putting everything together,
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Figure B1. The dependence on host halo mass, M200, of the scaled en-
ergy, Ẽ (top panel), and scaled angular momentum, L̃ (bottom panel), of
EAGLE satellites. The colour scale shows the density of points, with darker
colours corresponding to higher density regions. The distribution is column
normalised to each mass bin to allow easy comparison. The solid lines show
the median values as a function of M200, while the dotted lines show the 16
and 84 percentiles of the distribution. The two vertical lines delineate the
mass range used in our analysis. The plots show that scaling the energy and
angular momentum by M

−2/3
200 leads to quantities that are independent of

M200 to a very good approximation.

we obtain Eq. (10), that is

p(M200 |xs ) = F (Ẽ, L̃) M200
∂Ẽ

∂M200

∂ L̃
∂M200

����Ẽ=Ẽ s, L̃=L̃s
. (A4)

We performed extensive tests of the three likelihoods, Eqs. (A2)-
(A4), to find that they give very robust estimates of the total mass
of haloes.

APPENDIX B: MASS DEPENDENCE OF SCALED
ENERGY AND ANGULAR MOMENTUM

Here we test the host halo mass independence of the scaled en-
ergy and angular momentum of satellites. We take all the luminous
satellites in the EAGLE simulation and scale their orbital energy and
orbital angular momentum according to Eq. (5), that is ∝ M2/3

200 ,
where M200 is the host mass. The resulting distributions are shown
in Fig. B1.

We find that, to a very good approximation, the distributions of
Ẽ and L̃ are indeed the same over at least two orders of magnitude
in host mass. There are a few small departures from universality,
especially for low halo masses. This could be a manifestation of
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Figure C1. The MW total mass estimate, MMW
200 , as a function of the as-

sumed concentration of the MW halo. The coloured lines show the mass
estimates from individual satellites and the black solid line shows the com-
bined mass estimate. There is a very weak dependence on concentration —
this is especially true for the combined mass estimate, which remains flat
over a wide range of halo concentration.

the limited resolution of EAGLE, which resolves only a small frac-
tion of the brightest satellites of 1011.2 M� haloes. However, this
small departure from universality does not affect our results since
this work is based on hosts with masses in the range 1011.7 M�
to 1012.5 M� , which corresponds to the region between the two
vertical lines in Fig. B1.

APPENDIX C: DEPENDENCE ON CONCENTRATION

In Fig. C1 we show how the MW halo concentration affects our
mass estimate. Note that in our method (described in Section 3) we
marginalise over the concentration parameter. The coloured lines
show the mass estimates from individual satellites and the thick
black line the combined mass estimate as a function of the assumed
halo concentration. In general, the concentration makes little differ-
ence to our estimated masses — this is especially true for the com-
bined mass estimate, which remains flat over a wide range in halo
concentration. While not shown, we also find that the maximum
likelihood values are largely independent of the assumed concen-
tration. Thus, the 10 classical satellites studied here cannot, on their
own, constrain the MW halo concentration. However, as we show
in Section 4.2, we can estimate the concentration of the MW halo
by combining our total halo mass estimate with determinations of
the halo mass in the inner regions of the Galaxy.

APPENDIX D: DISTRIBUTION OF MAXIMUM
LIKELIHOODS

The MW classical satellites have at least two atypical properties:
(i) they are distributed on a thin plane with many of the satellites ro-
tating within this plane, and (ii) the satellites have a very low veloc-
ity anisotropy indicative of circularly biased orbits. These two char-
acteristics place the MW satellite system in the 5% and 2% tails of
theΛCDM predictions (Cautun et al. 2015; Cautun & Frenk 2017).
This raises the concern that the satellites may also be atypical in
terms of their energy or angular momentum distributions. If so, this
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Figure D1. The distribution of maximum likelihood values for the mass
determination method based on the energy and angular momentum of satel-
lites. We show results for a sample of ∼2500 EAGLE systems and for the
30 AURIGA haloes which have a higher resolution and different galaxy for-
mation models than EAGLE. The downward pointing arrow shows the max-
imum likelihood corresponding to the MW mass determination, which is
fully consistent with the EAGLE and AURIGA distributions. This indicates
that the MW is not an atypical system in terms of its satellites’ energy and
angular momentum, and thus we can trust our MW mass determination.

could lead to biases or untrustworthy MW mass estimates using our
method.

A straightforward way to test for this is to compare the max-
imum likelihood value for the MW with the corresponding values
for a large sample of ΛCDM haloes. This is shown in Fig. D1,
where we plot the distribution of maximum likelihood values for
the EAGLE and AURIGA mock satellite systems. We find very good
agreement between the EAGLE and AURIGA mocks and, more im-
portantly, the value for the MW lies in the central region of the
ΛCDM expectation. This indicates that we can find a range of M200
values for the Galactic halo for which the classical satellites have
energy and angular momentum values that are fully consistent with
the ΛCDM predictions.
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