Skip to main content

Research Repository

Advanced Search

3-D P-wave velocity structure of oceanic core complexes at 13◦N on the Mid-Atlantic Ridge

Simão, N.M.; Peirce, C.; Funnell, M.J.; Robinson, A.H.; Searle, R.C.; MacLeod, C.J.; Reston, T.J.

3-D P-wave velocity structure of oceanic core complexes at 13◦N on the Mid-Atlantic Ridge Thumbnail


N.M. Simão

M.J. Funnell

A.H. Robinson

R.C. Searle

C.J. MacLeod

T.J. Reston


The Mid-Atlantic Ridge at 13° N is regarded as a type locality for oceanic core complexes (OCCs), as it contains, within ∼70 km along the spreading axis, four that are at different stages of their life cycle. The wealth of existing seabed observations and sampling makes this an ideal target to resolve contradictions between the existing models of OCC development. Here we describe the results of P-wave seismic tomographic modelling within a 60 × 60 km footprint, containing several OCCs, the ridge axis and both flanks, which determines OCC crustal structure, detachment geometry and OCC interconnectivity along axis. A grid of wide-angle seismic refraction data was acquired along a series of 17 transects within which a network of 46 ocean-bottom seismographs was deployed. Approximately 130,000 first arrival travel times, together with sparse Moho reflections, have been modelled, constraining the crust and uppermost mantle to a depth of ∼10 km below sea level. Depth slices through this 3-D model reveal several independent structures each with a higher P-wave velocity (Vp) than its surrounds. At the seafloor, these features correspond to the OCCs adjacent to the axial valley walls at 13°20′N and 13°30′N, and off axis at 13°25′N. These high-Vp features display dipping trends into the deeper crust, consistent with the surface expression of each OCC's detachment, implying that rocks of the mid-to-lower crust and uppermost mantle within the footwall are juxtaposed against lower Vp material in the hanging-wall. The neovolcanic zone of the ridge axis has systematically lower Vp than the surrounding crust at all depths, and is wider between OCCs. On average, throughout the 13° N region, the crust is ∼6 km-thick. However, beneath a deep lava-floored basin between axial OCCs the crust is thinner and is more characteristically oceanic in layering and velocity-depth structure. Thicker crust at the ridge axis suggests a more magmatic phase of current crustal formation, while modelling of the sparse Moho reflections suggests the crust-mantle boundary is a transition zone throughout most of the 13° N segment. Our results support a model in which OCCs are bounded by independent detachment faults whose dip increases with depth and is variable with azimuth around each OCC, suggesting a geometry and mechanism of faulting that is more complicated than previously thought. The steepness of the northern flank of the 13°20′N detachment suggests that it represents a transfer zone between different faulting regimes to the south and north. We propose that individual detachments may not be linked along-axis, and that OCCs act as transfer zones linking areas of normal spreading and detachment faulting. Along ridge variation in magma supply influences the nature of this detachment faulting. Consequently, not only does magma supply control how detachments rotate and migrate off axis before finally becoming inactive, but also how, when and where new OCCs are created.


Simão, N., Peirce, C., Funnell, M., Robinson, A., Searle, R., MacLeod, C., & Reston, T. (2020). 3-D P-wave velocity structure of oceanic core complexes at 13◦N on the Mid-Atlantic Ridge. Geophysical Journal International, 221(3), 1555-1579.

Journal Article Type Article
Acceptance Date Feb 20, 2020
Online Publication Date Feb 24, 2020
Publication Date Jun 30, 2020
Deposit Date Aug 5, 2019
Publicly Available Date Feb 21, 2020
Journal Geophysical Journal International
Print ISSN 0956-540X
Electronic ISSN 1365-246X
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 221
Issue 3
Pages 1555-1579


Accepted Journal Article (25.7 Mb)

Copyright Statement
This article has been accepted for publication in Geophysical journal international ©: 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

You might also like

Downloadable Citations