Professor Matthew Jones m.p.a.jones@durham.ac.uk
Professor
Probing new physics using Rydberg states of atomic hydrogen
Jones, M.P.A.; Potvliege, R.M.; Spannowsky, M.
Authors
Dr Robert Potvliege r.m.potvliege@durham.ac.uk
Associate Professor
M. Spannowsky
Abstract
We consider the role of high-lying Rydberg states of simple atomic systems such as 1H in setting constraints on physics beyond the standard model. We obtain highly accurate bound states energies for a hydrogen atom in the presence of an additional force carrier (the energy levels of the Hellmann potential). These results show that varying the size and shape of the Rydberg state by varying the quantum numbers provides a way to probe the range of new forces. By combining these results with the current state-of-the-art QED corrections, we determine a robust global constraint on new physics that includes all current spectroscopic data in hydrogen. Lastly, we show that improved measurements that fully exploit modern cooling and trapping methods as well as higher lying states could lead to a strong, statistically robust global constraint on new physics based on laboratory measurements only.
Citation
Jones, M., Potvliege, R., & Spannowsky, M. (2020). Probing new physics using Rydberg states of atomic hydrogen. Physical Review Research, 2(1), Article 013244. https://doi.org/10.1103/physrevresearch.2.013244
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 4, 2020 |
Online Publication Date | Mar 3, 2020 |
Publication Date | Mar 3, 2020 |
Deposit Date | Oct 7, 2019 |
Publicly Available Date | Mar 5, 2020 |
Journal | Physical Review Research |
Electronic ISSN | 2643-1564 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 2 |
Issue | 1 |
Article Number | 013244 |
DOI | https://doi.org/10.1103/physrevresearch.2.013244 |
Public URL | https://durham-repository.worktribe.com/output/1289708 |
Related Public URLs | http://arxiv.org/abs/1909.09194 |
Files
Published Journal Article
(916 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
You might also like
Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide
(2024)
Journal Article
Deuterium spectroscopy for enhanced bounds on physics beyond the standard model
(2023)
Journal Article
High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in Cu2O
(2022)
Journal Article
Rydberg excitons in synthetic cuprous oxide Cu2O
(2021)
Journal Article
Microwave-optical coupling via Rydberg excitons in cuprous oxide
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search