Alia Radwan Abdallah Al Ghosoun alia.r.al-ghosoun@durham.ac.uk
PGR Student Doctor of Philosophy
A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds
Al-Ghosoun, A.; Osman, A.S.; Seaid, M.
Authors
Professor Ashraf Osman ashraf.osman@durham.ac.uk
Professor
Dr Mohammed Seaid m.seaid@durham.ac.uk
Associate Professor
Abstract
Purpose The purpose of this study is twofold: first, to derive a consistent model free-surface runup flow problems over deformable beds. The authors couple the nonlinear one-dimensional shallow water equations, including friction terms for the water free-surface and the two-dimensional second-order solid elastostatic equations for the bed deformation. Second, to develop a robust hybrid finite element/finite volume method for solving free-surface runup flow problems over deformable beds. The authors combine the finite volume for free-surface flows and the finite element method for bed elasticity. Design/methodology/approach The authors propose a new model for wave runup by static deformation on seabeds. The model consists of the depth-averaged shallow water system for the water free-surface coupled to the second-order elastostatic formulation for the bed deformation. At the interface between the water flow and the seabed, transfer conditions are implemented. Here, hydrostatic pressure and friction forces are considered for the elastostatic equations, whereas bathymetric forces are accounted for in the shallow water equations. As numerical solvers, the authors propose a well-balanced finite volume method for the flow system and a stabilized finite element method for elastostatics. Findings The developed coupled depth-averaged shallow water system and second-order solid elastostatic system is well suited for modeling wave runup by deformation on seabeds. The derived coupling conditions at the interface between the water flow and the bed topography resolve well the condition transfer between the two systems. The proposed hybrid finite volume element method is accurate and efficient for this class of models. The novel technique used for wet/dry treatment accurately captures the moving fronts in the computational domain without generating nonphysical oscillations. The presented numerical results demonstrate the high performance of the proposed methods. Originality/value Enhancing modeling and computations for wave runup problems is at an early stage in the literature, and it is a new and exciting area of research. To the best of our knowledge, solving wave runup problems by static deformation on seabeds using a hybrid finite volume element method is presented for the first time. The results of this research study, and the research methodologies, will have an important influence on a range of other scientists carrying out research in related fields.
Citation
Al-Ghosoun, A., Osman, A., & Seaid, M. (2021). A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds. Engineering Computations, 38(5), 2434-2459. https://doi.org/10.1108/ec-05-2020-0275
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 13, 2020 |
Online Publication Date | Dec 14, 2020 |
Publication Date | 2021 |
Deposit Date | Nov 22, 2020 |
Publicly Available Date | Nov 23, 2020 |
Journal | Engineering Computations |
Print ISSN | 0264-4401 |
Publisher | Emerald |
Peer Reviewed | Peer Reviewed |
Volume | 38 |
Issue | 5 |
Pages | 2434-2459 |
DOI | https://doi.org/10.1108/ec-05-2020-0275 |
Public URL | https://durham-repository.worktribe.com/output/1284883 |
Files
Accepted Journal Article
(1.6 Mb)
PDF
Copyright Statement
© 2020, Emerald Publishing Limited. This AAM is provided for your own personal use only. It may not be used for resale, reprinting, systematic distribution, emailing, or for any other commercial purpose without the permission of the publisher.
You might also like
Estimate end bearing resistance of a circular foundation using small strain and large deformation finite element modelling
(2024)
Presentation / Conference Contribution
A fully coupled dynamic water-mooring line system: Numerical implementation and applications
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search