A. Allabar
Vesicle shrinkage in hydrous phonolitic melt during cooling
Allabar, A.; Dobson, K.J.; Bauer, C.C.; Nowak, M.
Authors
K.J. Dobson
C.C. Bauer
M. Nowak
Abstract
The ascent of hydrous magma prior to volcanic eruptions is largely driven by the formation of H2O vesicles and their subsequent growth upon further decompression. Porosity controls buoyancy as well as vesicle coalescence and percolation, and is important when identifying the differences between equilibrium or disequilibrium degassing from textural analysis of eruptive products. Decompression experiments are routinely used to simulate magma ascent. Samples exposed to high temperature (T) and pressure (P) are decompressed and rapidly cooled to ambient T for analysis. During cooling, fluid vesicles may shrink due to decrease of the molar volume of H2O and by resorption of H2O back into the melt driven by solubility increase with decreasing T at P < 300 MPa. Here, we quantify the extent to which vesicles shrink during cooling, using a series of decompression experiments with hydrous phonolitic melt (5.3–3.3 wt% H2O, T between 1323 and 1373 K, decompressed from 200 to 110–20 MPa). Most samples degassed at near-equilibrium conditions during decompression. However, the porosities of quenched samples are significantly lower than expected equilibrium porosities prior to cooling. At a cooling rate of 44 K·s−1, the fictive temperature Tf, where vesicle shrinkage stops, is up to 200 K above the glass transition temperature (Tg), Furthermore, decreasing cooling rate enhances vesicles shrinkage. We assess the implications of these findings on previous experimental degassing studies using phonolitic melt, and highlight the importance of correctly interpreting experimental porosity data, before any comparison to natural volcanic ejecta can be attempted.
Citation
Allabar, A., Dobson, K., Bauer, C., & Nowak, M. (2020). Vesicle shrinkage in hydrous phonolitic melt during cooling. Contributions to Mineralogy and Petrology, 175(3), Article 21. https://doi.org/10.1007/s00410-020-1658-3
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 16, 2020 |
Online Publication Date | Feb 12, 2020 |
Publication Date | 2020 |
Deposit Date | Feb 26, 2020 |
Publicly Available Date | Feb 26, 2020 |
Journal | Contributions to Mineralogy and Petrology |
Print ISSN | 0010-7999 |
Electronic ISSN | 1432-0967 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 175 |
Issue | 3 |
Article Number | 21 |
DOI | https://doi.org/10.1007/s00410-020-1658-3 |
Public URL | https://durham-repository.worktribe.com/output/1276538 |
Files
Published Journal Article
(4.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
You might also like
In situ observation of the percolation threshold in multiphase magma analogues
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search