Dr Oto Obong Inyang o.o.a.inyang@durham.ac.uk
Assistant Professor
The role of low Gd concentrations on magnetisation behaviour in rare earth:transition metal alloy films
Inyang, O.; Rafiq, A.; Swindells, C.; Ali, S.; Atkinson, D.
Authors
A. Rafiq
C. Swindells
S. Ali
Professor Del Atkinson del.atkinson@durham.ac.uk
Professor
Abstract
The magnetisation reversal behaviour as a function of composition was studied in low rare earth concentration alloys. 30 nm thick rare earth:transition-metal films of composition GdxCo100−x, GdxFe100−x and Gdx(Co50Fe50)100−x were prepared by magnetron sputtering, where x ranged from 4 to 13 atomic%. Magnetisation behaviour was studied using MOKE and Hall hysteresis measurements. The magnetic reversal behaviour as a function of Gd content is strongly dependent on the transition metal. With increasing Gd content the film structure transitions from crystalline to amorphous and the saturation magnetisation decreases linearly. For GdCo, the reversal field, Hc, increases by less than a factor of two with Gd doping of 11%, while for Fe, the coercivity falls by a factor of ten with 8% Gd. This may be attributed to changes in the crystalline morphology. GdCoFe shows a similar trend with Gd doping for the in-plane reversal field to that of GdFe. With 13% Gd in Fe there is evidence indicating the presence of a weak perpendicular magnetic anisotropy, PMA. With Gd doping the anomalous Hall resistivity of Co, Fe and CoFe increases significantly with the largest increase observed for GdCoFe.
Citation
Inyang, O., Rafiq, A., Swindells, C., Ali, S., & Atkinson, D. (2020). The role of low Gd concentrations on magnetisation behaviour in rare earth:transition metal alloy films. Scientific Reports, 10(1), Article 9767. https://doi.org/10.1038/s41598-020-66595-5
Journal Article Type | Article |
---|---|
Acceptance Date | May 26, 2020 |
Online Publication Date | Jun 17, 2020 |
Publication Date | 2020 |
Deposit Date | Jun 25, 2020 |
Publicly Available Date | Jun 25, 2020 |
Journal | Scientific Reports |
Electronic ISSN | 2045-2322 |
Publisher | Nature Research |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 1 |
Article Number | 9767 |
DOI | https://doi.org/10.1038/s41598-020-66595-5 |
Public URL | https://durham-repository.worktribe.com/output/1267548 |
Files
Published Journal Article
(2.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
You might also like
Non-uniform Gd distribution and magnetization profiles within GdCoFe alloy thin films
(2023)
Journal Article
Interface enhanced precessional damping in spintronic multilayers: A perspective
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search