D. Opherden
Extremely well isolated two-dimensional spin-1/2 antiferromagnetic Heisenberg layers with a small exchange coupling in the molecular-based magnet CuPOF
Opherden, D.; Nizar, N.; Richardson, K.; Monroe, J.C.; Turnbull, M.M.; Polson, M.; Vela, S.; Blackmore, W.J.A.; Goddard, P.A.; Singleton, J.; Choi, E.S.; Xiao, F.; Williams, R.C.; Lancaster, T.; Pratt, F.L.; Blundell, S.J.; Skourski, Y.; Uhlarz, M.; Ponomaryov, A.N.; Zvyagin, S.A.; Wosnitza, J.; Baenitz, M.; Heinmaa, I.; Stern, R.; Kühne, H.; Landee, C.P.
Authors
N. Nizar
K. Richardson
J.C. Monroe
M.M. Turnbull
M. Polson
S. Vela
W.J.A. Blackmore
P.A. Goddard
J. Singleton
E.S. Choi
F. Xiao
R.C. Williams
Professor Tom Lancaster tom.lancaster@durham.ac.uk
Professor
F.L. Pratt
S.J. Blundell
Y. Skourski
M. Uhlarz
A.N. Ponomaryov
S.A. Zvyagin
J. Wosnitza
M. Baenitz
I. Heinmaa
R. Stern
H. Kühne
C.P. Landee
Abstract
We report on a comprehensive characterization of the newly synthesized Cu2+-based molecular magnet [Cu(pz)2 (2-HOpy)2](PF6 )2 (CuPOF), where pz = C4H4N2 and 2-HOpy = C5H4NHO. From a comparison of theoretical modeling to results of bulk magnetometry, specific heat, μ+SR, ESR, and NMR spectroscopy, this material is determined as an excellent realization of the two dimensional square-lattice S = 1 2 antiferromagnetic Heisenberg model with a moderate intraplane nearest-neighbor exchange coupling of J/kB = 6.80(5) K, and an extremely small interlayer interaction of about 1 mK. At zero field, the bulk magnetometry reveals a temperature-driven crossover of spin correlations from isotropic to XY type, caused by the presence of a weak intrinsic easy-plane anisotropy. A transition to long-range order, driven by the low-temperature XY anisotropy under the influence of the interlayer coupling, occurs at TN = 1.38(2) K, as revealed by μ+SR. In applied magnetic fields, our 1H-NMR data reveal a strong increase of the magnetic anisotropy, manifested by a pronounced enhancement of the transition temperature to commensurate long-range order at TN = 2.8 K and 7 T.
Citation
Opherden, D., Nizar, N., Richardson, K., Monroe, J., Turnbull, M., Polson, M., …Landee, C. (2020). Extremely well isolated two-dimensional spin-1/2 antiferromagnetic Heisenberg layers with a small exchange coupling in the molecular-based magnet CuPOF. Physical Review B, 102(6), Article 064431. https://doi.org/10.1103/physrevb.102.064431
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 27, 2020 |
Online Publication Date | Aug 28, 2020 |
Publication Date | 2020-08 |
Deposit Date | Aug 31, 2020 |
Publicly Available Date | Sep 1, 2020 |
Journal | Physical Review B |
Print ISSN | 2469-9950 |
Electronic ISSN | 2469-9969 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 102 |
Issue | 6 |
Article Number | 064431 |
DOI | https://doi.org/10.1103/physrevb.102.064431 |
Public URL | https://durham-repository.worktribe.com/output/1263414 |
Related Public URLs | https://arxiv.org/abs/2005.12058 |
Files
Published Journal Article
(1.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
You might also like
Studying spin diffusion and quantum entanglement with LF-µSR
(2023)
Journal Article
Many-body quantum muon effects and quadrupolar coupling in solids
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search