Skip to main content

Research Repository

Advanced Search

A multivariable Casson–Lin type invariant

Benard, Leo; Conway, Anthony

A multivariable Casson–Lin type invariant Thumbnail


Authors

Leo Benard

Anthony Conway



Abstract

We introduce a multivariable Casson–Lin type invariant for links in S3. This invariant is defined as a signed count of irreducible SU(2) representations of the link group with fixed meridional traces. For 2-component links with linking number one, the invariant is shown to be a sum of multivariable signatures. We also obtain some results concerning deformations of SU(2) representations of link groups.

Citation

Benard, L., & Conway, A. (2020). A multivariable Casson–Lin type invariant. Annales de l'Institut Fourier, 70(3), 1029-1084. https://doi.org/10.5802/aif.3330

Journal Article Type Article
Acceptance Date Sep 18, 2019
Online Publication Date Jun 26, 2020
Publication Date 2020
Deposit Date Oct 7, 2020
Publicly Available Date Oct 7, 2020
Journal Annales de l'Institut Fourier
Print ISSN 0373-0956
Electronic ISSN 1777-5310
Publisher Association des Annales de l'Institut Fourier
Peer Reviewed Peer Reviewed
Volume 70
Issue 3
Pages 1029-1084
DOI https://doi.org/10.5802/aif.3330
Public URL https://durham-repository.worktribe.com/output/1260815

Files





You might also like



Downloadable Citations