Skip to main content

Research Repository

Advanced Search

Archaeal Intact Polar Lipids in Polar Waters: A Comparison Between the Amundsen and Scotia Seas

Spencer-Jones, Charlotte L.; McClymont, Erin L.; Bale, N.J.; Hopmans, E.C.; Schouten, S.; Muller, J.; Abrahamsen, E.P.; Allen, C.; Bickert, T.; Hillenbrand, C.D.; Mawbey, E.; Peck, V.; Svalova, A.; Smith, J.A.

Archaeal Intact Polar Lipids in Polar Waters: A Comparison Between the Amundsen and Scotia Seas Thumbnail


N.J. Bale

E.C. Hopmans

S. Schouten

J. Muller

E.P. Abrahamsen

C. Allen

T. Bickert

C.D. Hillenbrand

E. Mawbey

V. Peck

A. Svalova

J.A. Smith


The West Antarctic Ice Sheet (WAIS) is one of the largest potential sources of future sea-level rise, with glaciers draining the WAIS thinning at an accelerating rate over the past 40 years. Due to complexities in calibrating palaeoceanographic proxies for the Southern Ocean, it remains difficult to assess whether similar changes have occurred earlier during the Holocene or whether there is underlying centennial- to millennial-scale forcing in oceanic variability. Archaeal lipid-based proxies, specifically glycerol dialkyl glycerol tetraether (GDGT; e.g. TEX86 and TEXL86), are powerful tools for reconstructing ocean temperature, but these proxies have been shown previously to be difficult to apply to the Southern Ocean. A greater understanding of the parameters that control Southern Ocean GDGT distributions would improve the application of these biomarker proxies and thus help provide a longer-term perspective on ocean forcing of Antarctic ice sheet changes. In this study, we characterised intact polar lipid (IPL)-GDGTs, representing (recently) living archaeal populations in suspended particulate matter (SPM) from the Amundsen Sea and the Scotia Sea. SPM samples from the Amundsen Sea were collected from up to four water column depths representing the surface waters through to Circumpolar Deep Water (CDW), whereas the Scotia Sea samples were collected along a transect encompassing the sub-Antarctic front through to the southern boundary of the Antarctic Circumpolar Current. IPL-GDGTs with low cyclic diversity were detected throughout the water column with high relative abundances of hydroxylated IPL-GDGTs identified in both the Amundsen and Scotia seas. Results from the Scotia Sea show shifts in IPL-GDGT signatures across well-defined fronts of the Southern Ocean. Indicating that the physicochemical parameters of these water masses determine changes in IPL-GDGT distributions. The Amundsen Sea results identified GDGTs with hexose-phosphohexose head groups in the CDW, suggesting active GDGT synthesis at these depths. These results suggest that GDGTs synthesised at CDW depths may be a significant source of GDGTs exported to the sedimentary record and that temperature reconstructions based on TEX86 or TEXL86 proxies may be significantly influenced by the warmer waters of the CDW.


Spencer-Jones, C. L., McClymont, E. L., Bale, N., Hopmans, E., Schouten, S., Muller, J., …Smith, J. (2021). Archaeal Intact Polar Lipids in Polar Waters: A Comparison Between the Amundsen and Scotia Seas. Biogeosciences, 18(11), 3485-3504.

Journal Article Type Article
Acceptance Date Mar 23, 2021
Online Publication Date Jun 11, 2021
Publication Date 2021
Deposit Date Sep 7, 2020
Publicly Available Date Jun 17, 2021
Journal Biogeosciences
Print ISSN 1726-4170
Electronic ISSN 1726-4189
Publisher European Geosciences Union
Peer Reviewed Peer Reviewed
Volume 18
Issue 11
Pages 3485-3504


You might also like

Downloadable Citations