B. Konomi
Bayesian analysis of multifidelity computer models with local features and non-nested experimental designs: Application to the WRF model
Konomi, B.; Karagiannis, G.
Abstract
Motivated by a multi-fidelity Weather Research and Forecasting (WRF) climate model application where the available simulations are not generated based on hierarchically nested experimental design, we develop a new co-kriging procedure called Augmented Bayesian Treed Co-Kriging. The proposed procedure extends the scope of co-kriging in two major ways. We introduce a binary treed partition latent process in the multifidelity setting to account for non-stationary and potential discontinuities in the model outputs at different fidelity levels. Moreover, we introduce an efficient imputation mechanism which allows the practical implementation of co-kriging when the experimental design is non-hierarchically nested by enabling the specification of semi-conjugate priors. Our imputation strategy allows the design of an efficient RJ-MCMC implementation that involves collapsed blocks and direct simulation from conditional distributions. We develop the Monte Carlo recursive emulator which provides a Monte Carlo proxy for the full predictive distribution of the model output at each fidelity level, in a computationally feasible manner. The performance of our method is demonstrated on benchmark examples and used for the analysis of a large-scale climate modeling application which involves the WRF model.
Citation
Konomi, B., & Karagiannis, G. (2021). Bayesian analysis of multifidelity computer models with local features and non-nested experimental designs: Application to the WRF model. Technometrics, 63(4), 510-522. https://doi.org/10.1080/00401706.2020.1855253
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 16, 2020 |
Online Publication Date | Dec 7, 2020 |
Publication Date | 2021 |
Deposit Date | Nov 16, 2020 |
Publicly Available Date | Dec 7, 2021 |
Journal | Technometrics |
Print ISSN | 0040-1706 |
Electronic ISSN | 1537-2723 |
Publisher | American Statistical Association |
Peer Reviewed | Peer Reviewed |
Volume | 63 |
Issue | 4 |
Pages | 510-522 |
DOI | https://doi.org/10.1080/00401706.2020.1855253 |
Public URL | https://durham-repository.worktribe.com/output/1250958 |
Related Public URLs | https://arxiv.org/abs/1910.08063 |
Files
Accepted Journal Article
(4.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc/4.0/
Copyright Statement
This is an Accepted Manuscript version of the following article, accepted for publication in Technometrics. Konomi, B. & Karagiannis, G. (2021). Bayesian analysis of multifidelity computer models with local features and non-nested experimental designs: Application to the WRF model. Technometrics 63(4): 510-522. It is deposited under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
Ice Model Calibration using Semi-continuous Spatial Data
(2022)
Journal Article
Calibrations and validations of biological models with an application on the renal fibrosis
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search