S. Gillman
The evolution of gas-phase metallicity and resolved abundances in star-forming galaxies at z ≍ 0.6-1.8
Gillman, S.; Tiley, A.L.; Swinbank, A.M.; Dudzevičiūtė, U.; Sharples, R.M.; Smail, Ian; Harrison, C.M.; Bunker, Andrew J.; Bureau, Martin; Cirasuolo, M.; Magdis, Georgios E.; Mendel, Trevor; Stott, John P.
Authors
A.L. Tiley
Professor Mark Swinbank a.m.swinbank@durham.ac.uk
Professor
Ugne Dudzeviciute ugne.dudzeviciute2@durham.ac.uk
PGR Student Doctor of Philosophy
Professor Ray Sharples r.m.sharples@durham.ac.uk
Professor
Ian Smail ian.smail@durham.ac.uk
Emeritus Professor
C.M. Harrison
Andrew J. Bunker
Martin Bureau
M. Cirasuolo
Georgios E. Magdis
Trevor Mendel
John P. Stott
Abstract
We present an analysis of the chemical abundance properties of ≈650 star-forming galaxies at z ≈ 0.6–1.8. Using integral-field observations from the K-band multi-object spectrograph (KMOS), we quantify the [N II]/H α emission-line ratio, a proxy for the gas-phase oxygen abundance within the interstellar medium. We define the stellar mass–metallicity relation at z ≈ 0.6–1.0 and z ≈ 1.2–1.8 and analyse the correlation between the scatter in the relation and fundamental galaxy properties (e.g. H α star formation rate, H α specific star formation rate, rotation dominance, stellar continuum half-light radius, and Hubble-type morphology). We find that for a given stellar mass, more highly star-forming, larger, and irregular galaxies have lower gas-phase metallicities, which may be attributable to their lower surface mass densities and the higher gas fractions of irregular systems. We measure the radial dependence of gas-phase metallicity in the galaxies, establishing a median, beam smearing corrected, metallicity gradient of ΔZ/ΔR = 0.002 ± 0.004 dex kpc−1, indicating on average there is no significant dependence on radius. The metallicity gradient of a galaxy is independent of its rest-frame optical morphology, whilst correlating with its stellar mass and specific star formation rate, in agreement with an inside–out model of galaxy evolution, as well as its rotation dominance. We quantify the evolution of metallicity gradients, comparing the distribution of ΔZ/ΔR in our sample with numerical simulations and observations at z ≈ 0–3. Galaxies in our sample exhibit flatter metallicity gradients than local star-forming galaxies, in agreement with numerical models in which stellar feedback plays a crucial role redistributing metals.
Citation
Gillman, S., Tiley, A., Swinbank, A., Dudzevičiūtė, U., Sharples, R., Smail, I., Harrison, C., Bunker, A. J., Bureau, M., Cirasuolo, M., Magdis, G. E., Mendel, T., & Stott, J. P. (2021). The evolution of gas-phase metallicity and resolved abundances in star-forming galaxies at z ≍ 0.6-1.8. Monthly Notices of the Royal Astronomical Society, 500(3), 4229-4247. https://doi.org/10.1093/mnras/staa3400
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 28, 2020 |
Online Publication Date | Oct 31, 2020 |
Publication Date | 2021-01 |
Deposit Date | May 5, 2021 |
Publicly Available Date | Jun 29, 2021 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 500 |
Issue | 3 |
Pages | 4229-4247 |
DOI | https://doi.org/10.1093/mnras/staa3400 |
Public URL | https://durham-repository.worktribe.com/output/1248607 |
Publisher URL | https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.4229G |
Files
Published Journal Article
(9.3 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 < z < 0.6
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search