Lea M Ibele
Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane
Ibele, Lea M; Lassmann, Yorick; Martinez, Todd J.; Curchod, Basile F.E.
Authors
Abstract
Ab Initio Multiple Spawning (AIMS) simulates the excited-state dynamics of molecular systems by representing nuclear wavepackets in a basis of coupled traveling Gaussian functions, called trajectory basis functions (TBFs). New TBFs are spawned when nuclear wavepackets enter regions of strong nonadiabaticity, permitting the description of non-Born-Oppenheimer processes. The spawning algorithm is simultaneously the blessing and the curse of the AIMS method: it allows for an accurate description of the transfer of nuclear amplitude between different electronic states, but it also dramatically increases the computational cost of the AIMS dynamics as all TBFs are coupled. Recently, a strategy coined stochastic-selection AIMS (SSAIMS) was devised to limit the ever-growing number of TBFs and tested on simple molecules. In this work, we use the photodynamics of three different molecules – cyclopropanone, fulvene, and 1,4-dithiane – to investigate (i) the potential of SSAIMS to reproduce reference AIMS results for challenging nonadiabatic dynamics, (ii) the compromise achieved by SSAIMS in obtaining accurate results while using the smallest average number of TBFs as possible, (iii) the performance of SSAIMS in comparison to the mixed quantum/classical method trajectory surface hopping (TSH) – both in terms of its accuracy and computational cost. We show that SSAIMS can accurately reproduce the AIMS results for the three molecules considered at a much cheaper computational cost, often close to that of TSH. We deduce from these tests that an overlap-based criterion for the stochastic-selection process leads to the best agreement with the reference AIMS dynamics for the smallest average number of TBFs.
Citation
Ibele, L. M., Lassmann, Y., Martinez, T. J., & Curchod, B. F. (2021). Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. The Journal of Chemical Physics, 154, Article 104110. https://doi.org/10.1063/5.0045572
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 18, 2021 |
Online Publication Date | Mar 9, 2021 |
Publication Date | Mar 14, 2021 |
Deposit Date | Feb 19, 2021 |
Publicly Available Date | Mar 30, 2021 |
Journal | Journal of Chemical Physics |
Print ISSN | 0021-9606 |
Electronic ISSN | 1089-7690 |
Publisher | American Institute of Physics |
Peer Reviewed | Peer Reviewed |
Volume | 154 |
Article Number | 104110 |
DOI | https://doi.org/10.1063/5.0045572 |
Public URL | https://durham-repository.worktribe.com/output/1246294 |
Files
Published Journal Article
(2.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search