Tsang Keung Chan tsang.k.chan@durham.ac.uk
Academic Visitor
Smoothed particle radiation hydrodynamics: two-moment method with local Eddington tensor closure
Chan, TK; Theuns, Tom; Bower, Richard; Frenk, Carlos
Authors
Professor Tom Theuns tom.theuns@durham.ac.uk
Professor
Richard Bower
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
Abstract
We present a new smoothed particle hydrodynamics-radiative transfer method (SPH-M1RT) that is coupled dynamically with SPH. We implement it in the (task-based parallel) SWIFT galaxy simulation code but it can be straightforwardly implemented in other SPH codes. Our moment-based method simultaneously solves the radiation energy and flux equations in SPH, making it adaptive in space and time. We modify the M1 closure relation to stabilize radiation fronts in the optically thin limit. We also introduce anisotropic artificial viscosity and high-order artificial diffusion schemes, which allow the code to handle radiation transport accurately in both the optically thin and optically thick regimes. Non-equilibrium thermochemistry is solved using a semi-implicit sub-cycling technique. The computational cost of our method is independent of the number of sources and can be lowered further by using the reduced speed-of-light approximation. We demonstrate the robustness of our method by applying it to a set of standard tests from the cosmological radiative transfer comparison project of Iliev et al. The SPH-M1RT scheme is well-suited for modelling situations in which numerous sources emit ionizing radiation, such as cosmological simulations of galaxy formation or simulations of the interstellar medium.
Citation
Chan, T., Theuns, T., Bower, R., & Frenk, C. (2021). Smoothed particle radiation hydrodynamics: two-moment method with local Eddington tensor closure. Monthly Notices of the Royal Astronomical Society, 505(4), 5784-5814. https://doi.org/10.1093/mnras/stab1686
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 9, 2021 |
Online Publication Date | Jun 12, 2021 |
Publication Date | 2021-08 |
Deposit Date | Jul 6, 2021 |
Publicly Available Date | Jul 6, 2021 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 505 |
Issue | 4 |
Pages | 5784-5814 |
DOI | https://doi.org/10.1093/mnras/stab1686 |
Public URL | https://durham-repository.worktribe.com/output/1245972 |
Related Public URLs | https://arxiv.org/abs/2102.08404 |
Files
Published Journal Article
(8 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
The FLAMINGO project: revisiting the S8 tension and the role of baryonic physics
(2023)
Journal Article
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search