Myo Thida
A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
Thida, Myo; Eng, How-Lung; Monekosso, Dorothy N.; Remagnino, Paolo
Authors
How-Lung Eng
Professor Dorothy Monekosso dorothy.monekosso@durham.ac.uk
Professor in Computer Science
Paolo Remagnino
Citation
Thida, M., Eng, H.-L., Monekosso, D. N., & Remagnino, P. (2013). A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets. Applied Soft Computing, 13(6), 3106-3117. https://doi.org/10.1016/j.asoc.2012.05.019
Journal Article Type | Article |
---|---|
Publication Date | 2013-06 |
Deposit Date | Nov 4, 2021 |
Journal | APPLIED SOFT COMPUTING |
Print ISSN | 1568-4946 |
Publisher | Elsevier |
Volume | 13 |
Issue | 6 |
Pages | 3106-3117 |
DOI | https://doi.org/10.1016/j.asoc.2012.05.019 |
Public URL | https://durham-repository.worktribe.com/output/1222978 |
You might also like
A review of ant algorithms
(2009)
Journal Article
Refined particle swarm intelligence method for abrupt motion tracking
(2014)
Journal Article
Crowd analysis: a survey
(2008)
Journal Article
Ant algorithms for image feature extraction
(2013)
Journal Article
Introducing Automation and Engineering for Ambient Intelligence
(2009)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search