Chensen Li
Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes
Li, Chensen; Harrison, Alastair K.; Liu, Yuchao; Zhao, Zhennan; Zeng, Cheng; Dias, Fernando B.; Ren, Zhongjie; Yan, Shouke; Bryce, Martin R.
Authors
Alastair K. Harrison
Yuchao Liu
Zhennan Zhao
Cheng Zeng
Dr Fernando Dias f.m.b.dias@durham.ac.uk
Associate Professor
Zhongjie Ren
Shouke Yan
Professor Martin Bryce m.r.bryce@durham.ac.uk
Professor
Abstract
Two asymmetric “half-dendronized” and “half-dendronized-half-encapsulated” TADF emitters eliminate degenerate excited states, assuring a solely thermal equilibrium route for an effective spin-flip process. AEE properties can minimize the exciton quenching. The isolated encapsulating tricarbazole unit protects the TADF unit, reducing nonradiative decay. Non-doped OLEDs with a remarkably high EQEmax of 24.0 % and low roll-off are achieved. The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully-conjugated or fully-nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical “half-dendronized” and “half-dendronized-half-encapsulated” emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge-transfer state, assuring a solely thermal equilibrium route for an effective spin-flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non-doped solution-processed devices reach a high external quantum efficiency (EQEmax) of 24.0 % (65.9 cd A−1, 59.2 lm W−1) with CIE coordinates of (0.24, 0.45) with a low efficiency roll-off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m−2.
Citation
Li, C., Harrison, A. K., Liu, Y., Zhao, Z., Zeng, C., Dias, F. B., …Bryce, M. R. (2022). Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angewandte Chemie International Edition, 61(19), Article e202115140. https://doi.org/10.1002/anie.202115140
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 6, 2021 |
Online Publication Date | Jan 20, 2022 |
Publication Date | May 2, 2022 |
Deposit Date | Feb 9, 2022 |
Publicly Available Date | Feb 10, 2022 |
Journal | Angewandte Chemie International Edition |
Print ISSN | 1433-7851 |
Electronic ISSN | 1521-3773 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 61 |
Issue | 19 |
Article Number | e202115140 |
DOI | https://doi.org/10.1002/anie.202115140 |
Public URL | https://durham-repository.worktribe.com/output/1215735 |
Files
Published Journal Article
(6.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
You might also like
Oligo(fluorenyl)pyridine ligands and their iridium complexes: Synthesis, photophysical properties and electrophosphorescent devices
(2005)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search