Professor Steve Abel s.a.abel@durham.ac.uk
Professor
Calculating the Higgs mass in string theory
Abel, Steven; Dienes, Keith R.
Authors
Keith R. Dienes
Abstract
In this paper, we establish a fully string-theoretic framework for calculating one-loop Higgs masses directly from first principles in perturbative closed-string theories. Our framework makes no assumptions other than world sheet modular invariance and is therefore applicable to all closed strings, regardless of the specific string construction utilized. This framework can also be employed even when spacetime supersymmetry is broken (and even when this breaking occurs at the Planck scale), and can be utilized for all scalar Higgs fields, regardless of the particular gauge symmetries they break. This therefore includes the Higgs field responsible for electroweak symmetry breaking in the Standard Model. Notably, using our framework, we demonstrate that a gravitational modular anomaly generically relates the Higgs mass to the one-loop cosmological constant, thereby yielding a string-theoretic connection between the two fundamental quantities which are known to suffer from hierarchy problems in the absence of spacetime supersymmetry. We also discuss a number of crucial issues involving the use and interpretation of regulators in UV/IR-mixed theories such as string theory, and the manner in which one can extract an effective field theory (EFT) description from such theories. Finally, we analyze the running of the Higgs mass within such an EFT description, and uncover the existence of a “dual IR” region which emerges at high energies as the consequence of an intriguing scaleinversion duality symmetry. We also identify a generic stringy effective potential for the Higgs fields in such theories. Our results can therefore serve as the launching point for a rigorous investigation of gauge hierarchy problems in string theory.
Citation
Abel, S., & Dienes, K. R. (2021). Calculating the Higgs mass in string theory. Physical Review D, 104(12), https://doi.org/10.1103/physrevd.104.126032
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 2, 2021 |
Online Publication Date | Dec 29, 2021 |
Publication Date | 2021 |
Deposit Date | Feb 22, 2022 |
Publicly Available Date | Feb 22, 2022 |
Journal | Physical Review D |
Print ISSN | 2470-0010 |
Electronic ISSN | 2470-0029 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 104 |
Issue | 12 |
DOI | https://doi.org/10.1103/physrevd.104.126032 |
Public URL | https://durham-repository.worktribe.com/output/1212912 |
Files
Published Journal Article
(1.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
You might also like
Quantum optimization of complex systems with a quantum annealer
(2022)
Journal Article
Cosmic Inflation and Genetic Algorithms
(2022)
Journal Article
Ising Machines for Diophantine Problems in Physics
(2022)
Journal Article
Completely quantum neural networks
(2022)
Journal Article
Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforcement Learning
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search