Dr Alessandro Giampieri alessandro.giampieri@durham.ac.uk
Postdoctoral Research Associate
A techno-economic evaluation of low-grade excess heat recovery and liquid desiccant-based temperature and humidity control in automotive paint shops
Giampieri, Alessandro; Ma, Zhiwei; Ling-Chin, Janie; Smallbone, Andrew J.; Roskilly, Anthony Paul
Authors
Dr Zhiwei Ma zhiwei.ma@durham.ac.uk
Associate Professor
Dr Janie Ling Chin janie.ling-chin@durham.ac.uk
Associate Professor
Professor Andrew Smallbone andrew.smallbone@durham.ac.uk
Professor
Professor Tony Roskilly anthony.p.roskilly@durham.ac.uk
Professor
Abstract
The paint shop is the most energy-intensive process in an automotive manufacturing plant, with air management systems that supply air to paint booths consuming the most energy. These systems are crucial for temperature and humidity control, in which they ensure the quality of the final product by preventing paint defects and thus avoid the additional cost of reworking. This is especially true for water-based paints, in which evaporation and film formation processes are influenced by the temperature and humidity of the surrounding air. This study aims to investigate the incorporation of liquid desiccant technology into a conventional air management system for paint shops operating in different climates, which presents the novelty of the study. The technology is promising because it can regulate humidity, act as a dehumidifier or humidifier depending on the demand and stores energy in a thermo-chemical form. In addition, waste heat sources available in the paint shop can be used for the regeneration of the liquid desiccant solution. The techno-economic evaluation of this novel process indicates that the proposed system can control the temperature and humidity of the supply air within the range required for optimal painting and achieve significant energy savings in both cold and hot/humid climates, with a reduction of 44.4% and 33.6% of the energy cost compared to the conventional operation and a payback period of 6.15 and 5.74 years respectively, using calcium chloride as the desiccant solution. The sensitivity analysis investigates the effect of the energy and carbon price on the performance of the system. It is concluded that the integration of liquid desiccant technology into conventional air management systems for paint booths has a huge potential to increase the energy-efficiency of automotive painting.
Citation
Giampieri, A., Ma, Z., Ling-Chin, J., Smallbone, A. J., & Roskilly, A. P. (2022). A techno-economic evaluation of low-grade excess heat recovery and liquid desiccant-based temperature and humidity control in automotive paint shops. Energy Conversion and Management, 261, Article 115654. https://doi.org/10.1016/j.enconman.2022.115654
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 17, 2022 |
Online Publication Date | Apr 27, 2022 |
Publication Date | Jun 1, 2022 |
Deposit Date | Apr 20, 2022 |
Publicly Available Date | Jun 28, 2022 |
Journal | Energy Conversion and Management |
Print ISSN | 0196-8904 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 261 |
Article Number | 115654 |
DOI | https://doi.org/10.1016/j.enconman.2022.115654 |
Public URL | https://durham-repository.worktribe.com/output/1209617 |
Files
Published Journal Article
(11.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
You might also like
Solid oxide fuel cells with integrated direct air carbon capture: A techno-economic study
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search