Andrew R. Watson
Interseismic Strain Accumulation Across the Main Recent Fault, SW Iran, From Sentinel‐1 InSAR Observations
Watson, Andrew R.; Elliott, John R.; Walters, Richard J.
Authors
John R. Elliott
Richard J. Walters
Abstract
The Main Recent Fault is a major right-lateral strike-slip fault in the western Zagros mountains of Iran. Recent geodetic and geological studies estimate a low slip rate of 1–6 mm/yr at an unknown depth which, when combined with a non-ideal fault geometry, makes the Main Recent Fault a difficult but interesting target for InSAR analysis. This analysis would further cement the estimated slip rate and provide an opportunity of estimate the depth to the base of the locked seismogenic zone, both important constraints on the seismic hazard posed by the fault, as well as for understanding how oblique convergence is accommodated and partitioned across the Zagros. We use 200 Sentinel-1 SAR images from the past 5 years, spanning two ascending and two descending tracks, to estimate the first InSAR-derived slip rate and locking depth for a 300 km long section of the fault. We utilize two established processing systems, LiCSAR and LiCSBAS, to produce interferograms and perform time series analysis, respectively. We constrain north-south motion using GNSS observations, decompose our InSAR line-of-sight velocities into fault-parallel and vertical motion, and fit 1-D screw dislocation models to three fault-perpendicular profiles of fault-parallel velocity, following a Bayesian approach to estimate the posterior probability distribution on the fault parameters. We estimate an interseismic slip velocity of 2.4 ± 1.2 mm/yr below a loosely constrained 14 km locking depth, the first such estimate for the fault, and discuss the challenges in constraining the locking depth for low magnitude interseismic signals.
Citation
Watson, A. R., Elliott, J. R., & Walters, R. J. (2022). Interseismic Strain Accumulation Across the Main Recent Fault, SW Iran, From Sentinel‐1 InSAR Observations. Journal of Geophysical Research. Solid Earth, 127(2), https://doi.org/10.1029/2021jb022674
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 28, 2022 |
Online Publication Date | Jan 31, 2022 |
Publication Date | 2022 |
Deposit Date | May 16, 2022 |
Publicly Available Date | May 16, 2022 |
Journal | Journal of Geophysical Research: Solid Earth |
Print ISSN | 2169-9313 |
Electronic ISSN | 2169-9356 |
Publisher | American Geophysical Union |
Peer Reviewed | Peer Reviewed |
Volume | 127 |
Issue | 2 |
DOI | https://doi.org/10.1029/2021jb022674 |
Public URL | https://durham-repository.worktribe.com/output/1207411 |
Files
Published Journal Article
(8.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
You might also like
LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity
(2020)
Journal Article
A Bayesian Method for Incorporating Self-Similarity into Earthquake Slip Inversions
(2018)
Journal Article
What causes subsidence following the 2011 eruption at Nabro (Eritrea)?
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search