Tilly Evans-Hofmann tilly.evans@durham.ac.uk
PGR Student Doctor of Philosophy
Observing EAGLE galaxies with JWST: predictions for Milky Way progenitors and their building blocks
Evans, Tilly A; Fattahi, Azadeh; Deason, Alis J; Frenk, Carlos S
Authors
Dr Azadeh Fattahi Savadjani azadeh.fattahi-savadjani@durham.ac.uk
Associate Professor
Professor Alis Deason alis.j.deason@durham.ac.uk
Professor
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
Abstract
We present predictions, derived from the EAGLE ΛCDM cosmological hydrodynamical simulations, for the abundance and properties of galaxies expected to be detected at high redshift by the James Webb Space Telescope (JWST). We consider the galaxy population as a whole and focus on the sub-population of progenitors of Milky Way (MW) analogues, defined to be galaxies with accretion histories similar to the MW’s, that is, galaxies that underwent a merger resembling the Gaia-Enceladus-Sausage (GES) event and that contain an analogue of the Large Magellanic Cloud (LMC) satellite today. We derive the luminosity function of all EAGLE galaxies in JWST/NIRCam passbands, in the redshift range z = 2 − 8, taking into account dust obscuration and different exposure times. For an exposure time of T = 105s, average MW progenitors are observable as far back as z ∼ 6 in most bands, and this changes to z ∼ 5 and z ∼ 4 for the GES and LMC progenitors, respectively. The progenitors of GES and LMC analogues are, on average, ∼2 and ∼1 mag fainter than the MW progenitors at most redshifts. They lie, on average, within ∼60 and 30 arcsec, respectively, of their future MW host at all times, and thus will appear within the field of view of JWST/NIRCam. We conclude that galaxies resembling the main progenitor of the MW and its major accreted components should be observable with JWST beyond redshift 2, providing a new and unique window in studying the formation history of our own galaxy.
Citation
Evans, T. A., Fattahi, A., Deason, A. J., & Frenk, C. S. (2022). Observing EAGLE galaxies with JWST: predictions for Milky Way progenitors and their building blocks. Monthly Notices of the Royal Astronomical Society, 516(3), 3861-3877. https://doi.org/10.1093/mnras/stac2410
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 22, 2022 |
Online Publication Date | Aug 29, 2022 |
Publication Date | 2022-11 |
Deposit Date | Oct 31, 2022 |
Publicly Available Date | Nov 2, 2022 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 516 |
Issue | 3 |
Pages | 3861-3877 |
DOI | https://doi.org/10.1093/mnras/stac2410 |
Public URL | https://durham-repository.worktribe.com/output/1186308 |
Files
Published Journal Article
(3.8 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2022 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
Pre-supernova stellar feedback in nearby starburst dwarf galaxies
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search