Skip to main content

Research Repository

Advanced Search

Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737

Speranza, G.; Ramos Almeida, C.; Acosta-Pulido, J.A.; Riffel, R.A.; Tadhunter, C.; Pierce, J.C.S.; Rodríguez-Ardila, A.; Coloma Puga, M.; Brusa, M.; Musiimenta, B.; Alexander, D.M.; Lapi, A.; Shankar, F.; Villforth, C.

Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737 Thumbnail


Authors

G. Speranza

C. Ramos Almeida

J.A. Acosta-Pulido

R.A. Riffel

C. Tadhunter

J.C.S. Pierce

A. Rodríguez-Ardila

M. Coloma Puga

M. Brusa

B. Musiimenta

A. Lapi

F. Shankar

C. Villforth



Abstract

We analyse Near-Infrared Integral Field Spectrograph (NIFS) observations of the type-2 quasar (QSO2) SDSS J094521.33+173753.2 to investigate its warm molecular and ionized gas kinematics. This QSO2 has a bolometric luminosity of 1045.7 erg s−1 and a redshift of z = 0.128. The K-band spectra provided by NIFS cover a range of 1.99–2.40 μm where low ionization (Paα and Brδ), high ionization ([S XI]λ1.920 μm and [Si VI]λ1.963 μm), and warm molecular lines (from H21-0S(5) to 1-0S(1)) are detected, allowing us to study the multi-phase gas kinematics. Our analysis reveals gas in ordinary rotation in all the emission lines detected and also outflowing gas in the case of the low and high ionization emission lines. In the case of the nuclear spectrum, which corresponds to a circular aperture of 0.3″ (686 pc) in diameter, the warm molecular lines can be characterized using a single Gaussian component of full width at half maximum (FWHM) = 350 − 400 km s−1, while Paα, Brδ, and [Si VI] are best fitted with two blue-shifted Gaussian components of FWHM ∼ 800 and 1700 km s−1, in addition to a narrow component of ∼300 km s−1. We interpret the blue-shifted broad components as outflowing gas, which reaches the highest velocities, of up to −840 km s−1, in the south-east direction (PA ∼ 125°), extending up to a distance of ∼3.4 kpc from the nucleus. The ionized outflow has a maximum mass outflow rate of Ṁout,max = 42–51 M⊙ yr−1, and its kinetic power represents 0.1% of the quasar bolometric luminosity. Very Large Array (VLA) data of J0945 show extended radio emission (PA ∼ 100°) that is aligned with the clumpy emission traced by the narrow component of the ionized lines up to scales of several kiloparsecs, and with the innermost part of the outflow (central ∼0.4″ = 915 pc). Beyond that radius, at the edge of the radio jet, the high velocity gas shows a different PA of ∼125°. This might be an indication that the line-emitting gas is being compressed and accelerated by the shocks generated by the radio jet.

Citation

Speranza, G., Ramos Almeida, C., Acosta-Pulido, J., Riffel, R., Tadhunter, C., Pierce, J., Rodríguez-Ardila, A., Coloma Puga, M., Brusa, M., Musiimenta, B., Alexander, D., Lapi, A., Shankar, F., & Villforth, C. (2022). Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737. Astronomy & Astrophysics, 665, Article A55. https://doi.org/10.1051/0004-6361/202243585

Journal Article Type Article
Acceptance Date Jun 28, 2022
Online Publication Date Sep 8, 2022
Publication Date 2022
Deposit Date Nov 17, 2022
Publicly Available Date Nov 17, 2022
Journal Astronomy & Astrophysics
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 665
Article Number A55
DOI https://doi.org/10.1051/0004-6361/202243585
Public URL https://durham-repository.worktribe.com/output/1185430

Files

Published Journal Article (Advance online version) (2.1 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Advance online version Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.






You might also like



Downloadable Citations