N.J. Hitchin
Integrable systems: twistors, loop groups, and Riemann surfaces.
Hitchin, N.J.; Segal, G.B.; Ward, R.S.
Authors
G.B. Segal
R.S. Ward
Abstract
This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles. Graeme Segal takes the Kortewegde Vries and nonlinear Schrödinger equations as central examples, and explores the mathematical structures underlying the inverse scattering transform. He explains the roles of loop groups, the Grassmannian, and algebraic curves. In the final part of the book, Richard Ward explores the connection between integrability and the self-dual Yang-Mills equations, and describes the correspondence between solutions to integrable equations and holomorphic vector bundles over twistor space.
Citation
Hitchin, N., Segal, G., & Ward, R. (1999). Integrable systems: twistors, loop groups, and Riemann surfaces. Oxford University Press
Book Type | Authored Book |
---|---|
Online Publication Date | Mar 18, 1999 |
Publication Date | 1999-03 |
Publisher | Oxford University Press |
Public URL | https://durham-repository.worktribe.com/output/1127637 |
Publisher URL | https://global.oup.com/academic/product/integrable-systems-9780198504214?cc=gb&lang=en&# |
You might also like
Infinite-Parameter ADHM Transform
(2020)
Journal Article
Hopf solitons on compact manifolds
(2018)
Journal Article
Integrable (2k)-Dimensional Hitchin Equations
(2016)
Journal Article
Symmetric Instantons and Discrete Hitchin Equations
(2016)
Journal Article
Geometry of Solutions of Hitchin Equations on R^2
(2016)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search