Almost all S-integer dynamical systems have many periodic points
(1998)
Journal Article
Ward, T. (1998). Almost all S-integer dynamical systems have many periodic points. Ergodic Theory and Dynamical Systems, 18(2), 471-486. https://doi.org/10.1017/s0143385798113378
We show that for almost every ergodic S-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than exp(-[1/2]htop) < 1. In the arithmetic case almost every zeta function is irrational. We conjecture that for a... Read More about Almost all S-integer dynamical systems have many periodic points.