On the Goncharov depth conjecture and polylogarithms of depth two
(2024)
Journal Article
Charlton, S., Gangl, H., Radchenko, D., & Rudenko, D. (2024). On the Goncharov depth conjecture and polylogarithms of depth two. Selecta Mathematica (New Series), 30(2), Article 27. https://doi.org/10.1007/s00029-024-00918-6
Outputs (3)
Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7 (2023)
Journal Article
Charlton, S., Gangl, H., & Radchenko, D. (2023). Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7. Pure and Applied Mathematics Quarterly, 19(1), 85-93. https://doi.org/10.4310/pamq.2023.v19.n1.a5
ζ({{2}^m, 1, {2}^m, 3}^n, {2}^m) / π^(4n+2m(2n+1))) is rational (2015)
Journal Article
Charlton, S. (2015). ζ({{2}^m, 1, {2}^m, 3}^n, {2}^m) / π^(4n+2m(2n+1))) is rational. Journal of Number Theory, 148, 463-477. https://doi.org/10.1016/j.jnt.2014.09.028The cyclic insertion conjecture of Borwein, Bradley, Broadhurst and Lisoněk states that inserting all cyclic shifts of some fixed blocks of 2's into the multiple zeta value ζ(1,3,…,1,3) gives an explicit rational multiple of a power of π . In this pa... Read More about ζ({{2}^m, 1, {2}^m, 3}^n, {2}^m) / π^(4n+2m(2n+1))) is rational.