Infinite volume and atoms at the bottom of the spectrum
(2024)
Journal Article
Edwards, S., Fraczyk, M., Lee, M., & Oh, H. (2024). Infinite volume and atoms at the bottom of the spectrum. Comptes Rendus Mathématique, 362, 1873-1880. https://doi.org/10.5802/crmath.586
Outputs (4)
Torus counting and self-joinings of Kleinian groups (2024)
Journal Article
Edwards, S., Lee, M., & Oh, H. (2024). Torus counting and self-joinings of Kleinian groups. Journal für die reine und angewandte Mathematik, 2024(807), 151-185. https://doi.org/10.1515/crelle-2023-0089For any integer d ≥ 1 , we obtain counting and equidistribution results for tori with small volume for a class of d-dimensional torus packings, invariant under a self-joining Γ ρ < ∏ i = 1 d PSL 2 ( ℂ ) of a Kleinian group Γ formed by a d-tuple of... Read More about Torus counting and self-joinings of Kleinian groups.
Temperedness of L 2 (Γ\G) and positive eigenfunctions in higher rank (2023)
Journal Article
Edwards, S., & Oh, H. (2023). Temperedness of L 2 (Γ\G) and positive eigenfunctions in higher rank. Communications of the American Mathematical Society, 3, 744-778. https://doi.org/10.1090/cams/25Let G = SO • (n, 1) × SO • (n, 1) and X = H n × H n for n ≥ 2. For a pair (π1, π2) of non-elementary convex cocompact representations of a finitely generated group Σ into SO • (n, 1), let Γ = (π1 × π2)(Σ). Denoting the bottom of the L 2-spectrum of t... Read More about Temperedness of L 2 (Γ\G) and positive eigenfunctions in higher rank.
Anosov groups: local mixing, counting and equidistribution (2023)
Journal Article
Edwards, S., Lee, M., & Oh, H. (2023). Anosov groups: local mixing, counting and equidistribution. Geometry & Topology, 27(2), 513-573. https://doi.org/10.2140/gt.2023.27.513Let G be a connected semisimple real algebraic group, and Γ<G a Zariski dense Anosov subgroup with respect to a minimal parabolic subgroup. We describe the asymptotic behavior of matrix coefficients ⟨(exptv). f1,f2⟩ in L2(Γ∖G) as t→∞ for any f1,f2Cc(...