Skip to main content

Research Repository

Advanced Search

Outputs (8)

Non-invertible symmetries and higher representation theory II (2024)
Journal Article
Bartsch, T., Bullimore, M., Ferrari, A. E. V., & Pearson, J. (2024). Non-invertible symmetries and higher representation theory II. SciPost Physics, 17(2), Article 067. https://doi.org/10.21468/scipostphys.17.2.067

In this paper we continue our investigation of the global categorical symmetries that arise when gauging finite higher groups and their higher subgroups with discrete torsion. The motivation is to provide a common perspective on the construction of n... Read More about Non-invertible symmetries and higher representation theory II.

Non-invertible symmetries and higher representation theory I (2024)
Journal Article
Bartsch, T., Bullimore, M., Ferrari, A. E. V., & Pearson, J. (2024). Non-invertible symmetries and higher representation theory I. SciPost Physics, 17(1), Article 015. https://doi.org/10.21468/scipostphys.17.1.015

The purpose of this paper is to investigate the global categorical symmetries that arise when gauging finite higher groups in three or more dimensions. The motivation is to provide a common perspective on constructions of non-invertible global symmet... Read More about Non-invertible symmetries and higher representation theory I.

Anomalies of generalized symmetries from solitonic defects (2024)
Journal Article
Bhardwaj, L., Bullimore, M., Ferrari, A. E. V., & Schäfer-Nameki, S. (2024). Anomalies of generalized symmetries from solitonic defects. SciPost Physics, 16, Article 087. https://doi.org/10.21468/scipostphys.16.3.087

We propose the general idea that ’t Hooft anomalies of generalized global symmetries can be understood in terms of the properties of solitonic defects, which generically are nontopological defects. The defining property of such defects is that they a... Read More about Anomalies of generalized symmetries from solitonic defects.

Generalized symmetries and anomalies of 3d N = 4 SCFTs (2024)
Journal Article
Bhardwaj, L., Bullimore, M., Ferrari, A. E. V., & Schäfer-Nameki, S. (2024). Generalized symmetries and anomalies of 3d N = 4 SCFTs. SciPost Physics, 16(3), Article 080. https://doi.org/10.21468/scipostphys.16.3.080

We study generalized global symmetries and their 't Hooft anomalies in 3d N=4 superconformal field theories (SCFTs). Following some general considerations, we focus on good quiver gauge theories, comprised of balanced unitary nodes and unbalanced uni... Read More about Generalized symmetries and anomalies of 3d N = 4 SCFTs.

The twisted index and topological saddles (2022)
Journal Article
Bullimore, M., Ferrari, A. E., Kim, H., & Xu, G. (2022). The twisted index and topological saddles. Journal of High Energy Physics, 2022(5), Article 116. https://doi.org/10.1007/jhep05%282022%29116

The twisted index of 3d N = 2 gauge theories on S 1 × Σ has an algebrogeometric interpretation as the Witten index of an effective supersymmetric quantum mechanics. In this paper, we consider the contributions to the supersymmetric quantum mechanics... Read More about The twisted index and topological saddles.

Supersymmetric Ground States of 3d $\mathcal{N}=4$ Gauge Theories on a Riemann Surface (2022)
Journal Article
Bullimore, M., Ferrari, A., & Kim, H. (2022). Supersymmetric Ground States of 3d $\mathcal{N}=4$ Gauge Theories on a Riemann Surface. SciPost Physics, 12(2), Article 072. https://doi.org/10.21468/scipostphys.12.2.072

This paper studies supersymmetric ground states of 3d N = 4 supersymmetric gauge theories on a Riemann surface of genus g . There are two distinct spaces of supersymmetric ground states arising from the A and B type twists on the Riemann surface, whi... Read More about Supersymmetric Ground States of 3d $\mathcal{N}=4$ Gauge Theories on a Riemann Surface.

Twisted indices of 3d N = 4 gauge theories and enumerative geometry of quasi-maps (2019)
Journal Article
Bullimore, M., Ferrari, A., & Kim, H. (2019). Twisted indices of 3d N = 4 gauge theories and enumerative geometry of quasi-maps. Journal of High Energy Physics, 2019(7), Article 14. https://doi.org/10.1007/jhep07%282019%29014

We explore the geometric interpretation of the twisted index of 3d N = 4 gauge theories on S 1 × Σ where Σ is a closed Riemann surface. We focus on a rich class of supersymmetric quiver gauge theories that have isolated vacua under generic mass and F... Read More about Twisted indices of 3d N = 4 gauge theories and enumerative geometry of quasi-maps.