Skip to main content

Research Repository

Advanced Search

Outputs (3)

ElecSus: Extension to arbitrary geometry magneto-optics (2017)
Journal Article
Keaveney, J., Adams, C. S., & Hughes, I. G. (2017). ElecSus: Extension to arbitrary geometry magneto-optics. Computer Physics Communications, 224, 311-324. https://doi.org/10.1016/j.cpc.2017.12.001

We present a major update to ElecSus, a computer program and underlying model to calculate the electric susceptibility of an alkali-metal atomic vapour. Knowledge of the electric susceptibility of a medium is essential to predict its absorptive and d... Read More about ElecSus: Extension to arbitrary geometry magneto-optics.

Four-wave mixing in a non-degenerate four-level diamond configuration in the hyperfine Paschen–Back regime (2017)
Journal Article
Whiting, D. J., Mathew, R. S., Keaveney, J., Adams, C. S., & Hughes, I. G. (2018). Four-wave mixing in a non-degenerate four-level diamond configuration in the hyperfine Paschen–Back regime. Journal of Modern Optics, 65(2), 119-128. https://doi.org/10.1080/09500340.2017.1377308

We present an experimental study of seeded four-wave mixing (4WM) using a diamond excitation scheme (with states from the 5S1/2,5P1/2,5P3/25S1/2,5P1/2,5P3/2 and 5D3/25D3/2 terms) in a thermal vapour of 87Rb87Rb atoms. We investigate the 4WM spectra u... Read More about Four-wave mixing in a non-degenerate four-level diamond configuration in the hyperfine Paschen–Back regime.

Single-photon interference due to motion in an atomic collective excitation (2017)
Journal Article
Whiting, D. J., Šibalić, N., Keaveney, J., Adams, C. S., & Hughes, I. G. (2017). Single-photon interference due to motion in an atomic collective excitation. Physical Review Letters, 118(25), Article 253601. https://doi.org/10.1103/physrevlett.118.253601

We experimentally demonstrate the generation of heralded bi-chromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats, a novel interference effect resulting from the relative m... Read More about Single-photon interference due to motion in an atomic collective excitation.