Skip to main content

Research Repository

Advanced Search

Outputs (13)

Peripheral halogen atoms in multi-resonant thermally activated delayed fluorescence emitters: the role of heavy atoms in intermolecular interactions and spin orbit coupling (2023)
Journal Article
Miranda-Salinas, H., Wang, J., Danos, A., Matulaitis, T., Stavrou, K., Monkman, A. P., & Zysman-Colman, E. (2024). Peripheral halogen atoms in multi-resonant thermally activated delayed fluorescence emitters: the role of heavy atoms in intermolecular interactions and spin orbit coupling. Journal of Materials Chemistry C Materials for optical and electronic devices, 12(6), 1996-2006. https://doi.org/10.1039/d3tc04394k

Multi-resonant thermally activated delayed fluorescence materials (MR-TADF) can show narrow-band emission with high photoluminescence quantum efficiency, desirable for applications in organic light emitting diodes (OLEDS). However, they frequently su... Read More about Peripheral halogen atoms in multi-resonant thermally activated delayed fluorescence emitters: the role of heavy atoms in intermolecular interactions and spin orbit coupling.

Intramolecular locking and coumarin insertion: a stepwise approach for TADF design (2023)
Journal Article
Paredis, S., Cardeynaels, T., Brebels, S., Deckers, J., Kuila, S., Lathouwers, A., Van Landeghem, M., Vandewal, K., Danos, A., Monkman, A. P., Champagne, B., & Maes, W. (2023). Intramolecular locking and coumarin insertion: a stepwise approach for TADF design. Physical Chemistry Chemical Physics, 25(43), 29842-29849. https://doi.org/10.1039/d3cp03695b

Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point... Read More about Intramolecular locking and coumarin insertion: a stepwise approach for TADF design.

Covalently linked pyrene antennas for optically dense yet aggregation-resistant light-harvesting systems (2023)
Journal Article
Salah, L., Makhseed, S., Ghazal, B., Abdel Nazeer, A., Etherington, M. K., Ponseca Jr., C. S., …Shuaib, A. (2023). Covalently linked pyrene antennas for optically dense yet aggregation-resistant light-harvesting systems. Physical Chemistry Chemical Physics, 25(36), 24878-24882. https://doi.org/10.1039/d3cp02586a

In this study we present a novel energy transfer material inspired by natural light-harvesting antenna arrays, zinc(II) phthalocyanine-pyrene (ZnPcPy). The ZnPcPy system facilitates energy transfer from 16 covalently linked pyrene (Py) donor chromoph... Read More about Covalently linked pyrene antennas for optically dense yet aggregation-resistant light-harvesting systems.

Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy (2023)
Journal Article
Alanazi, F., Eggeman, A. S., Stavrou, K., Danos, A., Monkman, A. P., & Mendis, B. G. (2023). Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 14(36), 8183-8190. https://doi.org/10.1021/acs.jpclett.3c01344

Structural disorder in molecular crystals is a fundamental limitation for achieving high charge carrier mobilities. Quantifying and uncovering the mechanistic origins of disorder are, however, extremely challenging. Here we use variable coherence tra... Read More about Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy.

Rational design of dibenzo[a,c]phenazine-derived isomeric thermally activated delayed fluorescence luminophores for efficient orange-red organic light-emitting diodes (2023)
Journal Article
Ye, H., Yang, J., Stavrou, K., Li, M., Liu, F., Li, F., …Monkman, A. P. (2023). Rational design of dibenzo[a,c]phenazine-derived isomeric thermally activated delayed fluorescence luminophores for efficient orange-red organic light-emitting diodes. Dyes and Pigments, 219, Article 111568. https://doi.org/10.1016/j.dyepig.2023.111568

It is an immense challenge to develop efficient long-wavelength (orange-to-red) thermally activated delayed fluorescence (TADF) materials due to the increasing nonradiative decay rates following the energy-gap law. Herein, two pairs of asymmetric iso... Read More about Rational design of dibenzo[a,c]phenazine-derived isomeric thermally activated delayed fluorescence luminophores for efficient orange-red organic light-emitting diodes.

Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence (2023)
Journal Article
Paredis, S., Cardeynaels, T., Kuila, S., Deckers, J., Van Landeghem, M., Vandewal, K., Danos, A., Monkman, A. P., Champagne, B., & Maes, W. (2023). Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence. Chemistry - A European Journal, 29(42), Article e202301369. https://doi.org/10.1002/chem.202301369

Metal-free organic emitters that display solution-phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound... Read More about Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence.

Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence (2023)
Journal Article
Sudhakar, P., Kuila, S., Stavrou, K., Danos, A., Slawin, A. M., Monkman, A., & Zysman-Colman, E. (2023). Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence. ACS Applied Materials and Interfaces, 15(21), 25806-25818. https://doi.org/10.1021/acsami.3c05409

Extensive research has been devoted to the development of thermally activated delayed fluorescence emitters, especially those showing pure-blue emission for use in lighting and fullcolor display applications. Towards that goal, herein we report a nov... Read More about Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence.

Conformational, Host, and Vibrational Effects Giving Rise to Dynamic TADF Behavior in the Through-Space Charge Transfer, Triptycene Bridged Acridine-Triazine Donor Acceptor TADF Molecule TpAT-tFFO (2023)
Journal Article
Miranda-Salinas, H., Rodriguez-Serrano, A., Kaminski, J. M., Dinkelbach, F., Hiromichi, N., Kusakabe, Y., Kaji, H., Marian, C. M., & Monkman, A. P. (2023). Conformational, Host, and Vibrational Effects Giving Rise to Dynamic TADF Behavior in the Through-Space Charge Transfer, Triptycene Bridged Acridine-Triazine Donor Acceptor TADF Molecule TpAT-tFFO. Journal of Physical Chemistry C, 127(18), 8607-8617. https://doi.org/10.1021/acs.jpcc.2c07529

We present a joint experimental and theoretical study of the through-space charge transfer (CT) TADF molecule TpAT-tFFO. The measured fluorescence has a singular Gaussian line shape but two decay components, coming from two distinct molecular CT conf... Read More about Conformational, Host, and Vibrational Effects Giving Rise to Dynamic TADF Behavior in the Through-Space Charge Transfer, Triptycene Bridged Acridine-Triazine Donor Acceptor TADF Molecule TpAT-tFFO.

Oxidation State Tuning of Room Temperature Phosphorescence and Delayed Fluorescence in Phenothiazine and Phenothiazine‐5,5‐dioxide Dimers (2023)
Journal Article
Wright, I. A., Etherington, M. K., Batsanov, A. S., Monkman, A. P., & Bryce, M. R. (2023). Oxidation State Tuning of Room Temperature Phosphorescence and Delayed Fluorescence in Phenothiazine and Phenothiazine‐5,5‐dioxide Dimers. Chemistry - A European Journal, 29(30), Article e202300428. https://doi.org/10.1002/chem.202300428

Heterocyclic dimers consisting of combinations of butterfly-shaped phenothiazine (PTZ) and its chemically oxidized form phenothiazine-5,5-dioxide (PTZ(SO2)) have been synthesized. A twist is imposed across the dimers by ortho-substituents including m... Read More about Oxidation State Tuning of Room Temperature Phosphorescence and Delayed Fluorescence in Phenothiazine and Phenothiazine‐5,5‐dioxide Dimers.

Unexpected Quasi‐Axial Conformer in Thermally Activated Delayed Fluorescence DMAC‐TRZ, Pushing Green OLEDs to Blue (2023)
Journal Article
Stavrou, K., Franca, L. G., Böhmer, T., Duben, L. M., Marian, C. M., & Monkman, A. P. (2023). Unexpected Quasi‐Axial Conformer in Thermally Activated Delayed Fluorescence DMAC‐TRZ, Pushing Green OLEDs to Blue. Advanced Functional Materials, 33(25), Article 2300910. https://doi.org/10.1002/adfm.202300910

Hidden photophysics is elucidated in the very well-known thermally activated delayed fluorescence (TADF) emitter, DMAC-TRZ. A molecule that, based on its structure, is considered not to have more than one structural conformation. However, based on ex... Read More about Unexpected Quasi‐Axial Conformer in Thermally Activated Delayed Fluorescence DMAC‐TRZ, Pushing Green OLEDs to Blue.