Skip to main content

Research Repository

Advanced Search

Outputs (6)

Testing strong lensing subhalo detection with a cosmological simulation (2022)
Journal Article
He, Q., Nightingale, J., Robertson, A., Amvrosiadis, A., Cole, S., Frenk, C. S., Massey, R., Li, R., Amorisco, N. C., Metcalf, R. B., Cao, X., & Etherington, A. (2023). Testing strong lensing subhalo detection with a cosmological simulation. Monthly Notices of the Royal Astronomical Society, 518(1), 220-239. https://doi.org/10.1093/mnras/stac2779

Strong gravitational lensing offers a compelling test of the cold dark matter paradigm, as it allows for subhaloes with masses of ∼109 M⊙ and below to be detected. We test commonly-used techniques for detecting subhaloes superposed in images of stron... Read More about Testing strong lensing subhalo detection with a cosmological simulation.

The “External” Shears In Strong Lens Models (2022)
Journal Article
Nightingale, J. W., Etherington, A., & Massey, R. (2022). The “External” Shears In Strong Lens Models. Proceedings of the International Astronomical Union, 18(S381), 13-16. https://doi.org/10.1017/s1743921323003691

The distribution of mass in galaxy-scale strong gravitational lenses is often modelled as an elliptical power law plus ‘external shear’, which notionally accounts for line-of-sight galaxies and cosmic shear. We argue that it does not, using three lin... Read More about The “External” Shears In Strong Lens Models.

Automated galaxy-galaxy strong lens modelling: No lens left behind (2022)
Journal Article
Etherington, A., Nightingale, J. W., Massey, R., Cao, X., Robertson, A., Amorisco, N. C., Amvrosiadis, A., Cole, S., Frenk, C. S., He, Q., Li, R., & Tam, S.-I. (2022). Automated galaxy-galaxy strong lens modelling: No lens left behind. Monthly Notices of the Royal Astronomical Society, 517(3), 3275-3302. https://doi.org/10.1093/mnras/stac2639

The distribution of dark and luminous matter can be mapped around galaxies that gravitationally lens background objects into arcs or Einstein rings. New surveys will soon observe hundreds of thousands of galaxy lenses, and current, labour-intensive a... Read More about Automated galaxy-galaxy strong lens modelling: No lens left behind.

Galaxy–galaxy strong lens perturbations: line-of-sight haloes versus lens subhaloes (2022)
Journal Article
He, Q., Li, R., Frenk, C. S., Nightingale, J., Cole, S., Amorisco, N. C., Massey, R., Robertson, A., Etherington, A., Amvrosiadis, A., & Cao, X. (2022). Galaxy–galaxy strong lens perturbations: line-of-sight haloes versus lens subhaloes. Monthly Notices of the Royal Astronomical Society, 512(4), 5862-5873. https://doi.org/10.1093/mnras/stac759

We rederive the number density of intervening line-of-sight haloes relative to lens subhaloes in galaxy-galaxy strong lensing observations, where these perturbers can generate detectable image fluctuations. Previous studies have calculated the detect... Read More about Galaxy–galaxy strong lens perturbations: line-of-sight haloes versus lens subhaloes.

Systematic Errors Induced by the Elliptical Power-law model in Galaxy–Galaxy Strong Lens Modeling (2022)
Journal Article
Cao, X., Li, R., Nightingale, J., Massey, R., Robertson, A., Frenk, C. S., Amvrosiadis, A., Amorisco, N. C., He, Q., Etherington, A., Cole, S., & Zhu, K. (2022). Systematic Errors Induced by the Elliptical Power-law model in Galaxy–Galaxy Strong Lens Modeling. Research in Astronomy and Astrophysics, 22(2), https://doi.org/10.1088/1674-4527/ac3f2b

The elliptical power-law (EPL) model of the mass in a galaxy is widely used in strong gravitational lensing analyses. However, the distribution of mass in real galaxies is more complex. We quantify the biases due to this model mismatch by simulating... Read More about Systematic Errors Induced by the Elliptical Power-law model in Galaxy–Galaxy Strong Lens Modeling.

A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses (2022)
Journal Article
He, Q., Robertson, A., Nightingale, J., Cole, S., Frenk, C. S., Massey, R., Amvrosiadis, A., Li, R., Cao, X., & Etherington, A. (2022). A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses. Monthly Notices of the Royal Astronomical Society, 511(2), 3046-3062. https://doi.org/10.1093/mnras/stac191

A fundamental prediction of the cold dark matter (CDM) model of structure formation is the existence of a vast population of dark matter haloes extending to subsolar masses. By contrast, other dark matter models, such as a warm thermal relic (WDM), p... Read More about A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses.