Skip to main content

Research Repository

Advanced Search

Outputs (211)

Efficient and Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection (2021)
Presentation / Conference Contribution
Thomson, W., Bhowmik, N., & Breckon, T. (2020, December). Efficient and Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection. Presented at 19th IEEE International Conference on Machine Learning and Applications (ICMLA 2020), Miami, FL

Automatic visual fire detection is used to complement traditional fire detection sensor systems (smoke/heat). In this work, we investigate different Convolutional Neural Network (CNN) architectures and their variants for the non-temporal real-time bo... Read More about Efficient and Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection.

Multi-Class 3D Object Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery (2021)
Presentation / Conference Contribution
Wang, Q., Bhowmik, N., & Breckon, T. (2020, December). Multi-Class 3D Object Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery. Presented at 19th IEEE International Conference on Machine Learning and Applications (ICMLA 2020), Miami, Florida

Automatic detection of prohibited objects within passenger baggage is important for aviation security. X-ray Computed Tomography (CT) based 3D imaging is widely used in airports for aviation security screening whilst prior work on automatic prohibite... Read More about Multi-Class 3D Object Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery.

On the Evaluation of Prohibited Item Classification and Detection in Volumetric 3D Computed Tomography Baggage Security Screening Imagery (2020)
Presentation / Conference Contribution
Wang, Q., Bhowmik, N., & Breckon, T. (2020, July). On the Evaluation of Prohibited Item Classification and Detection in Volumetric 3D Computed Tomography Baggage Security Screening Imagery. Presented at International Joint Conference on Neural Networks, Glasgow, Scotland

X-ray Computed Tomography (CT) based 3D imaging is widely used in airports for aviation security screening whilst prior work on prohibited item detection focuses primarily on 2D X-ray imagery. In this paper, we aim to evaluate the possibility of exte... Read More about On the Evaluation of Prohibited Item Classification and Detection in Volumetric 3D Computed Tomography Baggage Security Screening Imagery.

Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery (2020)
Presentation / Conference Contribution
Gaus, Y., Bhowmik, N., Isaac-Medina, B., & Breckon, T. (2020, September). Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery. Presented at Spie Security + Defence

Object detection from infrared-band (thermal) imagery has been a challenging problem for many years. With the advent of deep Convolutional Neural Networks (CNN), the automated detection and classification of objects of interest within the scene has b... Read More about Visible to Infrared Transfer Learning as a Paradigm for Accessible Real-time Object Detection and Classification in Infrared Imagery.

Domain Adaptation via Image Style Transfer (2020)
Book Chapter
Atapour-Abarghouei, A., & Breckon, T. (2020). Domain Adaptation via Image Style Transfer. In H. Venkateswara, & S. Panchanathan (Eds.), Domain adaptation in computer vision with deep learning (137-156). Springer Verlag. https://doi.org/10.1007/978-3-030-45529-3_8

While recent growth in modern machine learning techniques has led to remarkable strides in computer vision applications, one of the most significant challenges facing learning-based vision systems is the scarcity of large, high-fidelity datasets requ... Read More about Domain Adaptation via Image Style Transfer.

A Reference Architecture for Plausible Threat Image Projection (TIP) Within 3D X-ray Computed Tomography Volumes (2020)
Journal Article
Wang, Q., Megherbi, N., & Breckon, T. (2020). A Reference Architecture for Plausible Threat Image Projection (TIP) Within 3D X-ray Computed Tomography Volumes. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 28(3), 507-526. https://doi.org/10.3233/xst-200654

BACKGROUND: Threat Image Projection (TIP) is a technique used in X-ray security baggage screening systems that superimposes a threat object signature onto a benign X-ray baggage image in a plausible and realistic manner. It has been shown to be highl... Read More about A Reference Architecture for Plausible Threat Image Projection (TIP) Within 3D X-ray Computed Tomography Volumes.

Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling (2020)
Presentation / Conference Contribution
Wang, Q., & Breckon, T. (2020, February). Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling. Presented at Thirty Fourth AAAI Conference on Artificial Intelligence, New York, USA

Unsupervised domain adaptation aims to address the problem of classifying unlabeled samples from the target domain whilst labeled samples are only available from the source domain and the data distributions are different in these two domains. As a re... Read More about Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling.

Region Based Anomaly Detection With Real-Time Training and Analysis (2019)
Presentation / Conference Contribution
Adey, P., Bordewich, M., Breckon, T., & Hamilton, O. (2019, December). Region Based Anomaly Detection With Real-Time Training and Analysis. Presented at 18th IEEE International Conference on Machine Learning and Applications (ICMLA 2019), Boca Raton, Florida, USA

We present a method of anomaly detection that is capable of real-time operation on a live stream of images. The real-time performance applies to the training of the algorithm as well as subsequent analysis, and is achieved by substituting the region... Read More about Region Based Anomaly Detection With Real-Time Training and Analysis.