Skip to main content

Research Repository

Advanced Search

Outputs (210)

On Fine-tuned Deep Features for Unsupervised Domain Adaptation (2023)
Presentation / Conference Contribution
Wang, Q., Meng, F., & Breckon, T. (2023, June). On Fine-tuned Deep Features for Unsupervised Domain Adaptation. Presented at IJCNN 2023: International Joint Conference on Neural Networks, Queensland, Australia

Prior feature transformation based approaches to Unsupervised Domain Adaptation (UDA) employ the deep features extracted by pre-trained deep models without fine-tuning them on the specific source or target domain data for a particular domain adaptati... Read More about On Fine-tuned Deep Features for Unsupervised Domain Adaptation.

Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields (2023)
Presentation / Conference Contribution
Isaac-Medina, B., Willcocks, C., & Breckon, T. (2023, June). Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields. Presented at IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023, Vancouver, BC

Neural Radiance Fields (NeRF) have attracted significant attention due to their ability to synthesize novel scene views with great accuracy. However, inherent to their underlying formulation, the sampling of points along a ray with zero width may res... Read More about Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields.

Generalized Zero-Shot Domain Adaptation via Coupled Conditional Variational Autoencoders (2023)
Journal Article
Wang, Q., & Breckon, T. (2023). Generalized Zero-Shot Domain Adaptation via Coupled Conditional Variational Autoencoders. Neural Networks, 163, 40-52. https://doi.org/10.1016/j.neunet.2023.03.033

Domain adaptation aims to exploit useful information from the source domain where annotated training data are easier to obtain to address a learning problem in the target domain where only limited or even no annotated data are available. In classific... Read More about Generalized Zero-Shot Domain Adaptation via Coupled Conditional Variational Autoencoders.

Data Augmentation with norm-VAE and Selective Pseudo-Labelling for Unsupervised Domain Adaptation (2023)
Journal Article
Wang, Q., Meng, F., & Breckon, T. (2023). Data Augmentation with norm-VAE and Selective Pseudo-Labelling for Unsupervised Domain Adaptation. Neural Networks, 161, 614-625. https://doi.org/10.1016/j.neunet.2023.02.006

We address the Unsupervised Domain Adaptation (UDA) problem in image classification from a new perspective. In contrast to most existing works which either align the data distributions or learn domain-invariant features, we directly learn a unified c... Read More about Data Augmentation with norm-VAE and Selective Pseudo-Labelling for Unsupervised Domain Adaptation.

1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results (2023)
Presentation / Conference Contribution
Kiefer, B., Kristan, M., Pers, J., Zust, L., Poiesi, F., De Alcantara Andrade, F. A., Bernardino, A., Dawkins, M., Raitoharju, J., Quan, Y., Atmaca, A., Hofer, T., Zhang, Q., Xu, Y., Zhang, J., Tao, D., Sommer, L., Spraul, R., Zhao, H., Zhang, H., …Yang, M. T. (2023, January). 1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results. Presented at Proceedings - 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2023, Waikoloa, HI, USA

The 1st Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Det... Read More about 1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results.

Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery (2022)
Presentation / Conference Contribution
Bhowmik, N., & Breckon, T. (2022, December). Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery. Presented at International Conference on Machine Learning Applications, Bahamas

X-ray baggage security screening is in widespread use and crucial to maintaining transport security for threat/anomaly detection tasks. The automatic detection of anomaly, which is concealed within cluttered and complex electronics/electrical items,... Read More about Joint Sub-component Level Segmentation and Classification for Anomaly Detection within Dual-Energy X-Ray Security Imagery.

UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery (2022)
Presentation / Conference Contribution
Organisciak, D., Poyser, M., Alsehaim, A., Hu, S., Isaac-Medina, B. K., Breckon, T. P., & Shum, H. P. UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery. Presented at 2022 17th International Conference on Computer Vision Theory and Applications

As unmanned aerial vehicles (UAV) become more accessible with a growing range of applications, the risk of UAV disruption increases. Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with a single ca... Read More about UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-Identification in Video Imagery.

VID-Trans-ReID: Enhanced Video Transformers for Person Re-identification (2022)
Presentation / Conference Contribution
Alsehaim, A., & Breckon, T. (2022, November). VID-Trans-ReID: Enhanced Video Transformers for Person Re-identification. Presented at BMVC 2022: The 33rd British Machine Vision Conference, London, UK

Video-based person Re-identification (Re-ID) has received increasing attention recently due to its important role within surveillance video analysis. Video-based Re- ID expands upon earlier image-based methods by extracting person features temporally... Read More about VID-Trans-ReID: Enhanced Video Transformers for Person Re-identification.

Does lossy image compression affect racial bias within face recognition? (2022)
Presentation / Conference Contribution
Yucer, S., Poyser, M., Al Moubayed, N., & Breckon, T. (2022, October). Does lossy image compression affect racial bias within face recognition?. Presented at International Joint Conference on Biometrics (IJCB 2022), Abu Dhabi, UAE

This study investigates the impact of commonplace lossy image compression on face recognition algorithms with regard to the racial characteristics of the subject. We adopt a recently proposed racial phenotype-based bias analysis methodology to measur... Read More about Does lossy image compression affect racial bias within face recognition?.

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes (2022)
Presentation / Conference Contribution
Bond-Taylor, S., Hessey, P., Sasaki, H., Breckon, T., & Willcocks, C. (2022, October). Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes. Presented at ECCV 2022: European Conference on Computer Vision, Tel Aviv, Israel

Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have... Read More about Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes.