Skip to main content

Research Repository

Advanced Search

Outputs (2)

Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation (2023)
Journal Article
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Al Moubayed, N. (2023). Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation. AI open, 4, 19-32. https://doi.org/10.1016/j.aiopen.2023.05.001

This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence... Read More about Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation.

Improving Health Mention Classification Through Emphasising Literal Meanings: A Study Towards Diversity and Generalisation for Public Health Surveillance (2023)
Presentation / Conference Contribution
Aduragba, T. O., Yu, J., Cristea, A. I., & Long, Y. (2023, April). Improving Health Mention Classification Through Emphasising Literal Meanings: A Study Towards Diversity and Generalisation for Public Health Surveillance. Presented at WWW '23: The ACM Web Conference 2023, Austin, Texas

People often use disease or symptom terms on social media and online forums in ways other than to describe their health. Thus the NLP health mention classification (HMC) task aims to identify posts where users are discussing health conditions literal... Read More about Improving Health Mention Classification Through Emphasising Literal Meanings: A Study Towards Diversity and Generalisation for Public Health Surveillance.