Skip to main content

Research Repository

Advanced Search

Outputs (6)

Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment (2022)
Presentation / Conference Contribution
Leach, A., Schmon, S. M., Degiacomi, M. T., & Willcocks, C. G. (2022, April). Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment. Presented at ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Probabilistic diffusion models are capable of modeling complex data distributions on high-dimensional Euclidean spaces for a range applications. However, many real world tasks involve more complex structures such as data distributions defined on mani... Read More about Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment.

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes (2022)
Presentation / Conference Contribution
Bond-Taylor, S., Hessey, P., Sasaki, H., Breckon, T., & Willcocks, C. (2022, October). Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes. Presented at ECCV 2022: European Conference on Computer Vision, Tel Aviv, Israel

Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have... Read More about Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes.

MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray (2022)
Presentation / Conference Contribution
Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H. P., & Willcocks, C. G. (2022, July). MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. Presented at 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland

Computed tomography (CT) is an effective med-ical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, inclu... Read More about MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray.

Multi-view Vision Transformers for Object Detection (2022)
Presentation / Conference Contribution
Isaac-Medina, B., Willcocks, C., & Breckon, T. (2022, August). Multi-view Vision Transformers for Object Detection. Presented at International Conference on Pattern Recognition, Montreal, Canada

Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery (2022)
Presentation / Conference Contribution
Isaac-Medina, B., Bhowmik, N., Willcocks, C., & Breckon, T. (2022, June). Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery. Presented at 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, Louisiana

Dual-energy X-ray scanners are used for aviation security screening given their capability to discriminate materials inside passenger baggage. To facilitate manual operator inspection, a pseudo-colouring is assigned to the effective composition of th... Read More about Cross-modal Image Synthesis in Dual-Energy X-Ray Security Imagery.

AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise (2022)
Presentation / Conference Contribution
Wyatt, J., Leach, A., Schmon, S. M., & Willcocks, C. G. (2022, June). AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise. Presented at 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, LA

Generative models have been shown to provide a powerful mechanism for anomaly detection by learning to model healthy or normal reference data which can subsequently be used as a baseline for scoring anomalies. In this work we consider denoising diffu... Read More about AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise.