Skip to main content

Research Repository

Advanced Search

Outputs (25)

A Generative Bayesian Graph Attention Network for Semi-supervised Classification on Scarce Data (2021)
Presentation / Conference Contribution
Sun, Z., Harit, A., Yu, J., Cristea, A., & Al Moubayed, N. (2021, July). A Generative Bayesian Graph Attention Network for Semi-supervised Classification on Scarce Data. Presented at IEEE International Joint Conference on Neural Network (IJCNN2021), Virtual

This research focuses on semi-supervised classification tasks, specifically for graph-structured data under datascarce situations. It is known that the performance of conventional supervised graph convolutional models is mediocre at classification ta... Read More about A Generative Bayesian Graph Attention Network for Semi-supervised Classification on Scarce Data.

MOOCSent: a Sentiment Predictor for Massive Open Online Courses (2021)
Presentation / Conference Contribution
Alsheri, M. A., Alrajhi, L. M., Alamri, A., & Cristea, A. I. (2021, September). MOOCSent: a Sentiment Predictor for Massive Open Online Courses. Presented at 29th International Conference on Information systems and Development (ISD2021), Valencia, Spain

One key type of Massive Open Online Course (MOOC) data is the learners’ social interaction (forum). While several studies have analysed MOOC forums to predict learning outcomes, analysing learners’ sentiments in education and, specifically, in MOOCs,... Read More about MOOCSent: a Sentiment Predictor for Massive Open Online Courses.

Explaining Individual and Collective Programming Students’ Behavior by Interpreting a Black-Box Predictive Model (2021)
Journal Article
Pereira, F. D., Fonseca, S. C., Oliveira, E. H., Cristea, A. I., Bellhauser, H., Rodrigues, L., Oliveira, D. B., Isotani, S., & Carvalho, L. S. (2021). Explaining Individual and Collective Programming Students’ Behavior by Interpreting a Black-Box Predictive Model. IEEE Access, 9, 117097-117119. https://doi.org/10.1109/access.2021.3105956

Predicting student performance as early as possible and analysing to which extent initial student behaviour could lead to failure or success is critical in introductory programming (CS1) courses, for allowing prompt intervention in a move towards all... Read More about Explaining Individual and Collective Programming Students’ Behavior by Interpreting a Black-Box Predictive Model.

Forum-based Prediction of Certification in Massive Open Online Courses (2021)
Presentation / Conference Contribution
Alsheri, M. A., Alamri, A., Cristea, A. I., & Stewart, C. D. (2021, September). Forum-based Prediction of Certification in Massive Open Online Courses. Presented at 29th International Conference on Information systems and Development (ISD2021), Valencia, Spain

Massive Open Online Courses (MOOCs) have been suffering a very level of low course certification (less than 1% of the total number of enrolled students on a given online course opt to purchase its certificate), although MOOC platforms have been offer... Read More about Forum-based Prediction of Certification in Massive Open Online Courses.

Learners Demographics Classification on MOOCs During the COVID-19: Author Profiling via Deep Learning Based on Semantic and Syntactic Representations (2021)
Journal Article
Aljohani, T., & Cristea, A. I. (2021). Learners Demographics Classification on MOOCs During the COVID-19: Author Profiling via Deep Learning Based on Semantic and Syntactic Representations. Frontiers in Research Metrics and Analytics, 6, Article 673928. https://doi.org/10.3389/frma.2021.673928

Massive Open Online Courses (MOOCs) have become universal learning resources, and the COVID-19 pandemic is rendering these platforms even more necessary. In this paper, we seek to improve Learner Profiling (LP), i.e. estimating the demographic charac... Read More about Learners Demographics Classification on MOOCs During the COVID-19: Author Profiling via Deep Learning Based on Semantic and Syntactic Representations.

Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums (2021)
Presentation / Conference Contribution
Yu, J., Alrajhi, L., Harit, A., Sun, Z., Cristea, A. I., & Shi, L. (2021, June). Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility. However, due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support. Learners may post the... Read More about Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums.

Agent-based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students (2021)
Presentation / Conference Contribution
Alharbi, K., Cristea, A. I., Shi, L., Tymms, P., & Brown, C. (2021, June). Agent-based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

The classroom environment is a major contributor to the learning process in schools. Young students are affected by different details in their academic progress, be it their own characteristics, their teacher’s or their peers’. The combination of the... Read More about Agent-based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students.

Wide-Scale Automatic Analysis of 20 Years of ITS Research (2021)
Presentation / Conference Contribution
Hodgson, R., Cristea, A., Shi, L., & Graham, J. (2021, June). Wide-Scale Automatic Analysis of 20 Years of ITS Research. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

The analysis of literature within a research domain can provide significant value during preliminary research. While literature reviews may provide an in-depth understanding of current studies within an area, they are limited by the number of studies... Read More about Wide-Scale Automatic Analysis of 20 Years of ITS Research.

A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs (2021)
Presentation / Conference Contribution
Sun, Z., Harit, A., Yu, J., Cristea, A. I., & Shi, L. (2021, June). A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

Massive Open Online Course (MOOC) systems have become prevalent in recent years and draw more attention, a.o., due to the coronavirus pandemic’s impact. However, there is a well-known higher chance of dropout from MOOCs than from conventional off-lin... Read More about A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs.

A Recommender System Based on Effort: Towards Minimising Negative Affects and Maximising Achievement in CS1 Learning (2021)
Book Chapter
Pereira, F. D., Junior, H. B., Rodriquez, L., Toda, A., Oliveira, E. H., Cristea, A. I., …Isotani, S. (2021). A Recommender System Based on Effort: Towards Minimising Negative Affects and Maximising Achievement in CS1 Learning. In A. I. Cristea, & C. Troussas (Eds.), Intelligent Tutoring Systems: 17th International Conference, ITS 2021, Virtual Event, June 7–11, 2021, Proceedings (466-480). Springer Verlag. https://doi.org/10.1007/978-3-030-80421-3_51

Programming online judges (POJs) are autograders that have been increasingly used in introductory programming courses (also known as CS1) since these systems provide instantaneous and accurate feedback for learners’ codes solutions and reduce instruc... Read More about A Recommender System Based on Effort: Towards Minimising Negative Affects and Maximising Achievement in CS1 Learning.