Skip to main content

Research Repository

Advanced Search

Outputs (21)

Towards Designing Profitable Courses: Predicting Student Purchasing Behaviour in MOOCs (2021)
Journal Article
Alshehri, M., Alamri, A., Cristea, A. I., & Stewart, C. D. (2021). Towards Designing Profitable Courses: Predicting Student Purchasing Behaviour in MOOCs. International Journal of Artificial Intelligence in Education, 31(2), 215-233. https://doi.org/10.1007/s40593-021-00246-2

Since their ‘official’ emergence in 2012 (Gardner and Brooks 2018), massive open online courses (MOOCs) have been growing rapidly. They offer low-cost education for both students and content providers; however, currently there is a very low level of... Read More about Towards Designing Profitable Courses: Predicting Student Purchasing Behaviour in MOOCs.

Early Dropout Prediction for Programming Courses Supported by Online Judges (2019)
Presentation / Conference Contribution
Pereira, F. D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri, A., & Alshehri, M. (2019, June). Early Dropout Prediction for Programming Courses Supported by Online Judges. Presented at AIED 2019, Chicago, IL

Many educational institutions have been using online judges in programming classes, amongst others, to provide faster feedback for students and to reduce the teacher’s workload. There is some evidence that online judges also help in reducing dropout.... Read More about Early Dropout Prediction for Programming Courses Supported by Online Judges.

Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from the First Week’s Activities (2019)
Book Chapter
Alamri, A., Alshehri, M., Cristea, A. I., Pereira, F. D., Oliveira, E., Shi, L., & Stewart, C. (2019). Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from the First Week’s Activities. In A. Coy, Y. Hayashi, & M. Chang (Eds.), Intelligent tutoring systems. ITS 2019 (163-173). Springer Verlag. https://doi.org/10.1007/978-3-030-22244-4_20

While Massive Open Online Course (MOOCs) platforms provide knowledge in a new and unique way, the very high number of dropouts is a significant drawback. Several features are considered to contribute towards learner attrition or lack of interest, whi... Read More about Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from the First Week’s Activities.

Earliest Predictor of Dropout in MOOCs: A Longitudinal Study of FutureLearn Courses (2018)
Presentation / Conference Contribution
Cristea, A., Alamri, A., Kayama, M., Stewart, C., Alsheri, M., & Shi, L. (2018, October). Earliest Predictor of Dropout in MOOCs: A Longitudinal Study of FutureLearn Courses. Presented at 27th International Conference on Information Systems Development (ISD2018)., Lund, Sweden

Whilst a high dropout rate is a well-known problem in MOOCs, few studies take a data-driven approach to understand the reasons of such a phenomenon, and to thus be in the position to recommend and design possible adaptive solutions to alleviate it. I... Read More about Earliest Predictor of Dropout in MOOCs: A Longitudinal Study of FutureLearn Courses.

How is learning fluctuating? FutureLearn MOOCs fine-grained temporal Analysis and Feedback to Teachers (2018)
Presentation / Conference Contribution
Cristea, A., Alshehri, M., Alamri, A., Kayama, M., Stewart, C., & Shi, L. (2018, October). How is learning fluctuating? FutureLearn MOOCs fine-grained temporal Analysis and Feedback to Teachers. Presented at 27th International Conference on Information Systems Development (ISD2018)., Lund

Data-intensive analysis of massive open online courses (MOOCs) is popular. Researchers have been proposing various parameters conducive to analysis and prediction of student behaviour and outcomes in MOOCs, as well as different methods to analyse and... Read More about How is learning fluctuating? FutureLearn MOOCs fine-grained temporal Analysis and Feedback to Teachers.

Can Learner Characteristics Predict Their Behaviour on MOOCs? (2018)
Presentation / Conference Contribution
Cristea, A. I., Alamri, A., Alshehri, M., Kayama, M., Foss, J., Shi, L., & Stewart, C. D. (2018, December). Can Learner Characteristics Predict Their Behaviour on MOOCs?. Presented at 10th International Conference on Education Technology and Computers - ICETC '18, Tokyo

Stereotyping is the first type of adaptation in education ever proposed. However, the early systems have never dealt with the numbers of learners that current MOOCs provide. Thus, the umbrella question that this work tackles is if learner characteris... Read More about Can Learner Characteristics Predict Their Behaviour on MOOCs?.

Earliest Predictor of Dropout in MOOCs: A Longitudinal Study of FutureLearn Courses (2018)
Presentation / Conference Contribution
Cristea, A. I., Alamri, A., Kayama, M., Stewart, C., Alshehri, M., & Shi, L. (2018, August). Earliest Predictor of Dropout in MOOCs: A Longitudinal Study of FutureLearn Courses. Presented at 27th International Conference on Information Systems Development (ISD2018)., Lund, Sweden

Whilst a high dropout rate is a well-known problem in MOOCs, few studies take a data-driven approach to understand the reasons of such a phenomenon, and to thus be in the position to recommend and design possible adaptive solutions to alleviate it. I... Read More about Earliest Predictor of Dropout in MOOCs: A Longitudinal Study of FutureLearn Courses.

How is Learning Fluctuating? FutureLearn MOOCs Fine-grained Temporal Analysis and Feedback to Teachers and Designers (2018)
Presentation / Conference Contribution
Cristea, A. I., Alamri, A., Kayama, M., Stewart, C., Alshehri, M., & Shi, L. (2018, December). How is Learning Fluctuating? FutureLearn MOOCs Fine-grained Temporal Analysis and Feedback to Teachers and Designers. Presented at 27th International Conference on Information Systems Development (ISD2018), Lund, Sweden

Data-intensive analysis of massive open online courses (MOOCs) is popular. Researchers have been proposing various parameters conducive to analysis and prediction of student behaviour and outcomes in MOOCs, as well as different methods to analyse and... Read More about How is Learning Fluctuating? FutureLearn MOOCs Fine-grained Temporal Analysis and Feedback to Teachers and Designers.

A large-scale category-based evaluation of a visual language for adaptive hypermedia (2018)
Presentation / Conference Contribution
Khan, J., Cristea, A., & Alamri, A. (2018, June). A large-scale category-based evaluation of a visual language for adaptive hypermedia. Presented at 3rd International Conference on Information and Education Innovations (ICIEI'18), London

Adaptive Hypermedia (AH) provides a personalised and customised approach, enhancing the usability of hypermedia, by building a model of various qualities of a user and applying this information to adapt the content and the navigation to their require... Read More about A large-scale category-based evaluation of a visual language for adaptive hypermedia.

On the need for fine-grained analysis of Gender versus Commenting Behaviour in MOOCs (2018)
Presentation / Conference Contribution
Alshehri, M., Foss, J., Cristea, A. I., Kayama, M., Shi, L., Alamri, A., & Tsakalidis, A. (2018, June). On the need for fine-grained analysis of Gender versus Commenting Behaviour in MOOCs. Presented at 3rd International Conference on Information and Education Innovations (ICIEI'18), London

Stereotyping is the first type of adaptation ever proposed. However, the early systems have never dealt with the numbers of learners that current Massive Open Online Courses (MOOCs) provide. Thus, the umbrella question that this work tackles is if le... Read More about On the need for fine-grained analysis of Gender versus Commenting Behaviour in MOOCs.