Skip to main content

Research Repository

Advanced Search

Outputs (2)

Early Dropout Prediction for Programming Courses Supported by Online Judges (2019)
Presentation / Conference Contribution
Pereira, F. D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri, A., & Alshehri, M. (2019, June). Early Dropout Prediction for Programming Courses Supported by Online Judges. Presented at AIED 2019, Chicago, IL

Many educational institutions have been using online judges in programming classes, amongst others, to provide faster feedback for students and to reduce the teacher’s workload. There is some evidence that online judges also help in reducing dropout.... Read More about Early Dropout Prediction for Programming Courses Supported by Online Judges.

Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from the First Week’s Activities (2019)
Book Chapter
Alamri, A., Alshehri, M., Cristea, A. I., Pereira, F. D., Oliveira, E., Shi, L., & Stewart, C. (2019). Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from the First Week’s Activities. In A. Coy, Y. Hayashi, & M. Chang (Eds.), Intelligent tutoring systems. ITS 2019 (163-173). Springer Verlag. https://doi.org/10.1007/978-3-030-22244-4_20

While Massive Open Online Course (MOOCs) platforms provide knowledge in a new and unique way, the very high number of dropouts is a significant drawback. Several features are considered to contribute towards learner attrition or lack of interest, whi... Read More about Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from the First Week’s Activities.