Skip to main content

Research Repository

Advanced Search

Outputs (17)

On the Classification of SSVEP-Based Dry-EEG Signals via Convolutional Neural Networks (2018)
Presentation / Conference Contribution
Aznan, N., Bonner, S., Connolly, J., Al Moubayed, N., & Breckon, T. (2018, October). On the Classification of SSVEP-Based Dry-EEG Signals via Convolutional Neural Networks. Presented at 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC2018), Miyazaki, Japan

Electroencephalography (EEG) is a common signal acquisition approach employed for Brain-Computer Interface (BCI) research. Nevertheless, the majority of EEG acquisition devices rely on the cumbersome application of conductive gel (so-called wet-EEG)... Read More about On the Classification of SSVEP-Based Dry-EEG Signals via Convolutional Neural Networks.

Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments (2018)
Presentation / Conference Contribution
McGough, S., Forshaw, M., Brennan, J., Al Moubayed, N., & Bonner, S. (2018, October). Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments. Presented at 9th International Green and Sustainable Computing Conference., Pittsburgh, PA, US

High Throughput Computing (HTC) provides a convenient mechanism for running thousands of tasks. Many HTC systems exploit computers which are provisioned for other purposes by utilising their idle time - volunteer computing. This has great advantages... Read More about Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments.

CAM: A Combined Attention Model for Natural Language Inference (2018)
Presentation / Conference Contribution
Gajbhiye, A., Jaf, S., Al-Moubayed, N., Bradley, S., & McGough, A. S. (2018, December). CAM: A Combined Attention Model for Natural Language Inference. Presented at IEEE International Conference on Big Data., Seattle, WA, USA

Natural Language Inference (NLI) is a fundamental step towards natural language understanding. The task aims to detect whether a premise entails or contradicts a given hypothesis. NLI contributes to a wide range of natural language understanding appl... Read More about CAM: A Combined Attention Model for Natural Language Inference.

Confidence Measures for Carbon-Nanotube / Liquid Crystals Classifiers (2018)
Presentation / Conference Contribution
Vissol-Gaudin, E., Kotsialos, A., Groves, C., Pearson, C., Zeze, D., Petty, M., & Al-moubayed, N. (2018, July). Confidence Measures for Carbon-Nanotube / Liquid Crystals Classifiers. Presented at 2018 IEEE World Congress on Computational Intelligence (WCCI 2018)., Rio de Janeiro, Brazil

This paper focuses on a performance analysis of single-walled-carbon-nanotube / liquid crystal classifiers produced by evolution in materio. A new confidence measure is proposed in this paper. It is different from statistical tools commonly used to e... Read More about Confidence Measures for Carbon-Nanotube / Liquid Crystals Classifiers.

An Exploration of Dropout with RNNs for Natural Language Inference (2018)
Presentation / Conference Contribution
Gajbhiye, A., Jaf, S., Al-Moubayed, N., McGough, A. S., & Bradley, S. (2018, December). An Exploration of Dropout with RNNs for Natural Language Inference. Presented at ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes

Dropout is a crucial regularization technique for the Recurrent Neural Network (RNN) models of Natural Language Inference (NLI). However, dropout has not been evaluated for the effectiveness at different layers and dropout rates in NLI models. In thi... Read More about An Exploration of Dropout with RNNs for Natural Language Inference.

Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data using Deep Learning Models (2018)
Presentation / Conference Contribution
Alhassan, Z., McGough, S., Alshammari, R., Daghstani, T., Budgen, D., & Al Moubayed, N. (2018, October). Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data using Deep Learning Models. Presented at 27th International Conference on Artificial Neural Networks (ICANN)., Rhodes, Greece

Clinical data is usually observed and recorded at irregular intervals and includes: evaluations, treatments, vital sign and lab test results. These provide an invaluable source of information to help diagnose and understand medical conditions. In thi... Read More about Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data using Deep Learning Models.

Making Pictures Speak (2018)
Digital Artefact
Brown, A. (2018). Making Pictures Speak. [Website]

In the era of social media, images dominate over text. For English students in a world of Instagram and Amazon, images can reveal a great deal about the proclivities of readers. But how to access this data in a straightforward way, without having to... Read More about Making Pictures Speak.