Skip to main content

Research Repository

Advanced Search

Outputs (3)

A deep learning approach to fight illicit trafficking of antiquities using artefact instance classification (2022)
Journal Article
Winterbottom, T., Leone, A., & Al Moubayed, N. (2022). A deep learning approach to fight illicit trafficking of antiquities using artefact instance classification. Scientific Reports, 12(1), Article 13468. https://doi.org/10.1038/s41598-022-15965-2

We approach the task of detecting the illicit movement of cultural heritage from a machine learning perspective by presenting a framework for detecting a known artefact in a new and unseen image. To this end, we explore the machine learning problem o... Read More about A deep learning approach to fight illicit trafficking of antiquities using artefact instance classification.

Bilinear Pooling in Video-QA: Empirical Challenges and Motivational Drift from Neurological Parallels (2022)
Journal Article
Winterbottom, T., Xiao, S., McLean, A., & Al Moubayed, N. (2022). Bilinear Pooling in Video-QA: Empirical Challenges and Motivational Drift from Neurological Parallels. PeerJ Computer Science, 8(e974), Article e974. https://doi.org/10.7717/peerj-cs.974

Bilinear pooling (BLP) refers to a family of operations recently developed for fusing features from different modalities predominantly for visual question answering (VQA) models. Successive BLP techniques have yielded higher performance with lower co... Read More about Bilinear Pooling in Video-QA: Empirical Challenges and Motivational Drift from Neurological Parallels.

Bilinear Fusion of Commonsense Knowledge with Attention-Based NLI Models (2020)
Book Chapter
Gajbhiye, A., Winterbottom, T., Al Moubayed, N., & Bradley, S. (2020). Bilinear Fusion of Commonsense Knowledge with Attention-Based NLI Models. In I. Farkaš, P. Masulli, & S. Wermter (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2020 (633-646). Springer Verlag. https://doi.org/10.1007/978-3-030-61609-0_50

We consider the task of incorporating real-world commonsense knowledge into deep Natural Language Inference (NLI) models. Existing external knowledge incorporation methods are limited to lexical-level knowledge and lack generalization across NLI mode... Read More about Bilinear Fusion of Commonsense Knowledge with Attention-Based NLI Models.