Skip to main content

Research Repository

Advanced Search

Outputs (17)

Generating Textual Explanations for Machine Learning Models Performance: A Table-to-Text Task (2022)
Presentation / Conference Contribution
Ampomah, I., Burton, J., Enshaei, A., & Al Moubayed, N. (2022, June). Generating Textual Explanations for Machine Learning Models Performance: A Table-to-Text Task. Presented at 13th Conference on Language Resources and Evaluation (LREC 2022), Marseille, France

Numerical tables are widely employed to communicate or report the classification performance of machine learning (ML) models with respect to a set of evaluation metrics. For non-experts, domain knowledge is required to fully understand and interpret... Read More about Generating Textual Explanations for Machine Learning Models Performance: A Table-to-Text Task.

MuLD: The Multitask Long Document Benchmark (2022)
Presentation / Conference Contribution
Hudson, G. T., & Al Moubayed, N. (2022, June). MuLD: The Multitask Long Document Benchmark. Presented at 13th Conference on Language Resources and Evaluation (LREC 2022), Marseille, France

The impressive progress in NLP techniques has been driven by the development of multi-task benchmarks such as GLUE and SuperGLUE. While these benchmarks focus on tasks for one or two input sentences, there has been exciting work in designing efficien... Read More about MuLD: The Multitask Long Document Benchmark.

Bilinear Pooling in Video-QA: Empirical Challenges and Motivational Drift from Neurological Parallels (2022)
Journal Article
Winterbottom, T., Xiao, S., McLean, A., & Al Moubayed, N. (2022). Bilinear Pooling in Video-QA: Empirical Challenges and Motivational Drift from Neurological Parallels. PeerJ Computer Science, 8(e974), Article e974. https://doi.org/10.7717/peerj-cs.974

Bilinear pooling (BLP) refers to a family of operations recently developed for fusing features from different modalities predominantly for visual question answering (VQA) models. Successive BLP techniques have yielded higher performance with lower co... Read More about Bilinear Pooling in Video-QA: Empirical Challenges and Motivational Drift from Neurological Parallels.

ALADDIn: Autoencoder-LSTM based Anomaly Detector of Deformation in InSAR (2022)
Journal Article
Shakeel, A., Walters, R. J., Ebmeier, S. K., & Moubayed, N. A. (2022). ALADDIn: Autoencoder-LSTM based Anomaly Detector of Deformation in InSAR. IEEE Transactions on Geoscience and Remote Sensing, 60, https://doi.org/10.1109/tgrs.2022.3169455

In this study, we address the challenging problem of automatic detection of transient deformation of the Earth’s crust in time series of differential satellite radar [interferometric synthetic aperture radar (InSAR)] images. The detection of these ev... Read More about ALADDIn: Autoencoder-LSTM based Anomaly Detector of Deformation in InSAR.

Enhanced Methods for Evolution in-Materio Processors (2022)
Presentation / Conference Contribution
Jones, B. A., Al Moubayed, N., Zeze, D. A., & Groves, C. (2023, November). Enhanced Methods for Evolution in-Materio Processors. Presented at IEEE International Conference on Rebooting Computing (ICRC 2021), Virtual

Evolution-in-Materio (EiM) is an unconventional computing paradigm, which uses an Evolutionary Algorithm (EA) to configure a material's parameters so that it can perform a computational task. While EiM processors show promise, slow manufacturing and... Read More about Enhanced Methods for Evolution in-Materio Processors.

Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations (2022)
Presentation / Conference Contribution
Watson, M., Awwad Shiekh Hasan, B., & Al Moubayed, N. (2022, January). Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations. Presented at Proc. Winter Conference on Applications of Computer Vision, Waikoloa, HI

Deep Learning of neural networks has progressively become more prominent in healthcare with models reaching, or even surpassing, expert accuracy levels. However, these success stories are tainted by concerning reports on the lack of model transparenc... Read More about Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations.

Measuring Hidden Bias within Face Recognition via Racial Phenotypes (2022)
Presentation / Conference Contribution
Yucer, S., Tekras, F., Al Moubayed, N., & Breckon, T. (2022, January). Measuring Hidden Bias within Face Recognition via Racial Phenotypes. Presented at Proc. Winter Conference on Applications of Computer Vision, Waikoloa, HI

Recent work reports disparate performance for intersectional racial groups across face recognition tasks: face verification and identification. However, the definition of those racial groups has a significant impact on the underlying findings of such... Read More about Measuring Hidden Bias within Face Recognition via Racial Phenotypes.