Skip to main content

Research Repository

Advanced Search

Outputs (3)

Enhanced detection of movement onset in EEG through deep oversampling (2017)
Presentation / Conference Contribution
Al Moubayed, N., Hasan, B. A. S., & McGough, A. S. (2017, May). Enhanced detection of movement onset in EEG through deep oversampling. Presented at 30th International Joint Conference on Neural Networks (IJCNN 2017), Anchorage, Alaska, USA

A deep learning approach for oversampling of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and the detection of movement onset during online Brain-Comp... Read More about Enhanced detection of movement onset in EEG through deep oversampling.

Identifying Changes in the Cybersecurity Threat Landscape using the LDA-Web Topic Modelling Data Search Engine (2017)
Book Chapter
Al Moubayed, N., Wall, D., & McGough, A. (2017). Identifying Changes in the Cybersecurity Threat Landscape using the LDA-Web Topic Modelling Data Search Engine. In T. Tryfonas (Ed.), Human aspects of information security, privacy and trust : 5th International Conference, HAS 2017, held as part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, proceedings (287-295). Springer Verlag. https://doi.org/10.1007/978-3-319-58460-7_19

Successful Cybersecurity depends on the processing of vast quantities of data from a diverse range of sources such as police reports, blogs, intelligence reports, security bulletins, and news sources. This results in large volumes of unstructured tex... Read More about Identifying Changes in the Cybersecurity Threat Landscape using the LDA-Web Topic Modelling Data Search Engine.

Using Machine Learning in Trace-driven Energy-Aware Simulations of High-Throughput Computing Systems (2017)
Presentation / Conference Contribution
McGough, A. S., Al Moubayed, N., & M, F. (2017, April). Using Machine Learning in Trace-driven Energy-Aware Simulations of High-Throughput Computing Systems. Presented at ENERGY-SIM 2017, L'Aqua

When performing a trace-driven simulation of a High Throughput Computing system we are limited to the knowledge which should be available to the system at the current point within the simulation. However, the trace-log contains information we would n... Read More about Using Machine Learning in Trace-driven Energy-Aware Simulations of High-Throughput Computing Systems.