Skip to main content

Research Repository

Advanced Search

Outputs (38)

Predicting turbidity current activity offshore from meltwater-fed river deltas (2023)
Journal Article
Bailey, L. P., Clare, M. A., Pope, E. L., Haigh, I. D., Cartigny, M. J., Talling, P. J., …Heijnen, M. (2023). Predicting turbidity current activity offshore from meltwater-fed river deltas. Earth and Planetary Science Letters, 604, Article 117977. https://doi.org/10.1016/j.epsl.2022.117977

Quantification of the controls on turbidity current recurrence is required to better constrain land to sea fluxes of sediment, carbon and pollutants, and design resilient infrastructure that is vulnerable to such flows. This is particularly important... Read More about Predicting turbidity current activity offshore from meltwater-fed river deltas.

Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming (2022)
Journal Article
Pope, E. L., Heijnen, M. S., Talling, P. J., Jacinto, R. S., Gaillot, A., Baker, M. L., …Urlaub, M. (2022). Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming. Nature Geoscience, 15(10), 845-853. https://doi.org/10.1038/s41561-022-01017-x

Landslide-dams, which are often transient, can strongly affect the geomorphology, and sediment and geochemical fluxes, within subaerial fluvial systems. The potential occurrence and impact of analogous landslide-dams in submarine canyons has, however... Read More about Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming.

Longest sediment flows yet measured show how major rivers connect efficiently to deep sea (2022)
Journal Article
Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Jacinto, R. S., Heijnen, M. S., …Hilton, R. J. (2022). Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature Communications, 13(1), https://doi.org/10.1038/s41467-022-31689-3

Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flo... Read More about Longest sediment flows yet measured show how major rivers connect efficiently to deep sea.

Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada) (2022)
Journal Article
Hage, S., Galy, V., Cartigny, M., Heerema, C., Heijnen, M., Acikalin, S., …Talling, P. (2022). Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada). Journal of Geophysical Research: Biogeosciences, 127(6), https://doi.org/10.1029/2022jg006824

The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geo... Read More about Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada).

First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents (2022)
Journal Article
Pope, E. L., Cartigny, M. J., Clare, M. A., Talling, P. J., Lintern, D. G., Vellinga, A., …Vendettuoli, D. (2022). First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20), Article eabj3220. https://doi.org/10.1126/sciadv.abj3220

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are de... Read More about First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents.

Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes? (2022)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Pope, E. L., …Hughes Clarke, J. E. (2022). Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and Planetary Science Letters, 584, Article 117481. https://doi.org/10.1016/j.epsl.2022.117481

Submarine channels are the primary conduits for land-derived material, including organic carbon, pollutants, and nutrients, into the deep-sea. The flows (turbidity currents) that traverse these systems can pose hazards to seafloor infrastructure such... Read More about Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?.

Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon (2022)
Journal Article
Gwiazda, R., Paull, C., Kieft, B., Klimov, D., Herlien, R., Lundsten, E., …Talling, P. J. (2022). Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon. Journal of Geophysical Research: Earth Surface, 127(2), https://doi.org/10.1029/2021jf006437

The near-bed section of submarine gravity flows travels at the highest and most destructive speeds making direct measurements of this region of the flow difficult. Here results are presented from “boulder-like” Benthic Event Detectors (BEDs) that mea... Read More about Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon.

How distinctive are flood-triggered turbidity currents? (2022)
Journal Article
Heerema, C. J., Cartigny, M. J., Jacinto, R. S., Simmons, S. M., Apprioual, R., & Talling, P. J. (2022). How distinctive are flood-triggered turbidity currents?. Journal of Sedimentary Research, 92(1), 1-11. https://doi.org/10.2110/jsr.2020.168

Turbidity currents triggered at river mouths form an important highway for sediment, organic carbon, and nutrients to the deep sea. Consequently, it has been proposed that the deposits of these flood-triggered turbidity currents provide important lon... Read More about How distinctive are flood-triggered turbidity currents?.

Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers (2021)
Journal Article
Bailey, L. P., Clare, M. A., Rosenberger, K. J., Cartigny, M. J., Talling, P. J., Paull, C. K., …Lundsten, E. (2021). Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 562, Article 116845. https://doi.org/10.1016/j.epsl.2021.116845

Turbidity currents dominate sediment transfer into the deep ocean, and can damage critical seabed infrastructure. It is commonly inferred that powerful turbidity currents are triggered by major external events, such as storms, river floods, or earthq... Read More about Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers.

Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway (2020)
Journal Article
Barrett, R., Bellwald, B., Talling, P., Micallef, A., Gross, F., Berndt, C., …Krastel, S. (2021). Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research. Solid Earth, 126(2), Article e2020JB020655. https://doi.org/10.1029/2020jb020655

Submarine landslides can be several orders of magnitude larger than their terrestrial counterparts and can pose significant hazards across entire ocean basins. The landslide failure mechanism strongly controls the associated tsunami hazard. The Tampe... Read More about Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway.

Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (2020)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Lintern, D. G., …Hughes Clarke, J. E. (2020). Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature Communications, 11(1), Article 3129. https://doi.org/10.1038/s41467-020-16861-x

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of... Read More about Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution.

Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits (2020)
Journal Article
Hage, S., Galy, V., Cartigny, M., Acikalin, S., Clare, M., Gröcke, D., …Talling, P. (2020). Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits. Geology, 48(9), 882-887. https://doi.org/10.1130/g47320.1

Burial of terrestrial biospheric particulate organic carbon in marine sediments removes CO2 from the atmosphere, regulating climate over geologic time scales. Rivers deliver terrestrial organic carbon to the sea, while turbidity currents transport ri... Read More about Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S., Azpiroz-Zabala, M., Cartigny, M., Clare, M., Cooper, C., Parsons, D., …Talling, P. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019jc015904

Turbidity currents transport prodigious volumes of sediment to the deep‐sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds (2020)
Journal Article
Peakall, J., Best, J., Baas, J. H., Hodgson, D. M., Clare, M. A., Talling, P. J., …Lee, D. R. (2020). An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology, 67(4), 1601-1666. https://doi.org/10.1111/sed.12727

Flutes and tool marks are commonly observed sedimentary structures on the bases of sandstones in deep‐water successions. These sole structures are universally used as palaeocurrent indicators but, in sharp contrast to most sedimentary structures, the... Read More about An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds.

Direct evidence of a high-concentration basal layer in a submarine turbidity current (2020)
Journal Article
Wang, Z., Xu, J., Talling, P. J., Cartigny, M. J., Simmons, S. M., Gwiazda, R., …Parsons, D. R. (2020). Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep Sea Research Part I: Oceanographic Research Papers, 161, Article 103300. https://doi.org/10.1016/j.dsr.2020.103300

Submarine turbidity currents are one of the most important sediment transfer processes on earth. Yet the fundamental nature of turbidity currents is still debated; especially whether they are entirely dilute and turbulent, or a thin and dense basal l... Read More about Direct evidence of a high-concentration basal layer in a submarine turbidity current.

What determines the downstream evolution of turbidity currents? (2019)
Journal Article
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., …Pope, E. (2020). What determines the downstream evolution of turbidity currents?. Earth and Planetary Science Letters, 532, Article 116023. https://doi.org/10.1016/j.epsl.2019.116023

Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far fewer me... Read More about What determines the downstream evolution of turbidity currents?.

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J., Sumner, E. J., Clare, M. A., Hughes Clarke, J. E., Talling, P. J., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical Research Letters, 46(20), 11310-11320. https://doi.org/10.1029/2019gl084526

Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet, how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California (2019)
Journal Article
Maier, K. L., Rosenberger, K. J., Paull, C. K., Gwiazda, R., Gales, J., Lorenson, T., …Cartigny, M. J. (2019). Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep Sea Research Part I: Oceanographic Research Papers, 153, Article 103108. https://doi.org/10.1016/j.dsr.2019.103108

Submarine canyons are globally important conduits for sediment and organic carbon transport into the deep sea. Using a novel dataset from Monterey Canyon, offshore central California, that includes an extensive array of water column sampling devices,... Read More about Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California.

Linking Direct Measurements of Turbidity Currents to Submarine Canyon-Floor Deposits (2019)
Journal Article
Maier, K. L., Gales, J. A., Paull, C. K., Rosenberger, K., Talling, P. J., Simmons, S. M., …Sumner, E. J. (2019). Linking Direct Measurements of Turbidity Currents to Submarine Canyon-Floor Deposits. Frontiers in Earth Science, 7, Article 144. https://doi.org/10.3389/feart.2019.00144

Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedi... Read More about Linking Direct Measurements of Turbidity Currents to Submarine Canyon-Floor Deposits.

Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets (2019)
Journal Article
Pope, E. L., Normandeau, A., Ó Cofaigh, C., Stokes, C. R., & Talling, P. J. (2019). Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets. Marine Geology, 415, Article 105951. https://doi.org/10.1016/j.margeo.2019.05.010

Submarine channels, and the sediment density flows which form them, act as conduits for the transport of sediment, macro-nutrients, fresher water and organic matter from the coast to the deep sea. These systems are therefore significant pathways for... Read More about Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets.